
Université Paris-Sud 11
Ecole Doctorale d’Informatique de Paris-Sud

THÈSE

Présentée en vue d’obtention du grade de

DOCTEUR EN SCIENCES

Discipline : Informatique

par

Spyros Zoupanos

Sujet de la thèse :

Efficient peer-to-peer data management

(Gestion des données efficace en pair-à-pair)

Directeurs de thèse : Serge ABITEBOUL et Ioana MANOLESCU

Soutenue le 9 décembre 2009 devant le jury composé de :

Rapporteurs : M. Bernd AMANN LIP6 - Univ. de Pierre
et Marie Curie

M. Vasilis VASSALOS Athens Univ. of Economics
and Business

Examinateurs : Mme. Geneviève JOMIER Univ. Paris-Dauphine
M. Patrick VALDURIEZ INRIA Sophia Antipolis

- Méditerranée et Univ. de Nantes
Directeurs de thèse : M. Serge ABITEBOUL INRIA Saclay–Île-de-France et

LRI, Université de Paris Sud
Mme. Ioana MANOLESCU INRIA Saclay–Île-de-France et

LRI, Université de Paris Sud

Acknowledgements

There were many people that stood by me during these three years and
that I would like to thank. First of all, I would like to thank my parents who
were always next to me, doing their best to support me in my studies and
my life in general. Their help and advices are very important. I would also
like to thank my girlfriend Ana who also supported me and was next to me
during all the difficult moments of this thesis.

I would like to thank my supervisor, Ioana Manolescu, for her help, guid-
ance and support. She was always next to me whenever I needed her. She
was next to me even during difficult times for her, like during her pregnancy.
I believe that part of this work would not have existed if she had not been so
passionate with our common work. I would like to thank Serge Abiteboul. I
may have cooperated more with Ioana during this thesis but he was always
there whenever I wanted his help, like in the beginning of my thesis, and he
was always making me feel secure with his presence.

I would like to thank my professors in Athens and especially Yannis
Ioanidis and Alexis Delis. They were the first that made me love databases
and distributed system. Moreover, I would also like to thank them for their
help and guidance when I was searching a PhD position.

I also appreciated my cooperation with the engineers Evaldas Taroza,
Mohamed Ouazara and Alin Tilea. The last deserves many thanks for
his patience and help in the development of ViP2P. I would like to men-
tion that I enjoyed being in the same group with Nada Abdallah, Andrei
Arion, Vincent Armant, Pierre Bouhris, François Calvier, Bogdan Cautis,
Philippe Chatalic, Philippe Dague, Hélène Gagliardi, Alban Galland, Anca
Ghitescu, François Goasdoué, Fayçal Hamdi, Konstantinos Karanasos, Aste-
rios Katsifodimos, Yannis Katsis, Evgeny Kharlamov, Wael Khemiri, Julien
Leblay, Yingmin Li, Bogdan Marinoiu, Cedric du Mouza, Yassine Mrabet,
Huu-Nghia Nguyen, Nobal Niraula, Marilena Oita, Nathalie Pernelle, Radu
Pop, Nicoleta Preda, Chantal Reynaud, Philippe Rigaux, Jesus Camacho
Rodriguez, Laurent Romary, Brigitte Safar, Fatiha Saïs, Pierre Senellart,
Laurent Simon, Cristina Sirangelo, Mohamadou Thiam, Gabriel Vassile,
Michalis Vazirgiannis, Véronique Ventos, Ravi Vijay and Lina Ye. I would

i

also like to thank the secretaries of the group (Marie Domingues and Celine
Halter) for doing their best to resolve our bureaucratic problems.

ii

Résumé

Le développement de l’internet a conduit à une grande augmentation
de l’information disponible pour les utilisateurs. Ces utilisateurs veulent
exprimer leur besoins de manière simple, par l’intermédiaire des requêtes, et
ils veulent que ces requêtes soient évaluées sans se soucier où les données sont
placées ou comment les requêtes sont évaluées. Le travail qui est présenté
dans cette thèse contribue à l’objectif de la gestion du contenu du Web de
manière déclarative et efficace et il est composé de deux parties. Dans le
premier partie, nous présentons OptimAX, un optimiseur pour la langage
Active XML qui est capable de reécrire un document Active XML donné
dans un autre document équivalent dont l’évaluation sera plus efficace.
OptimAX contribue à résoudre le problème d’optimisation des requêtes
distribuées dans le cadre d’Active XML et nous présentons deux études de
cas. Dans le deuxième partie, nous proposons une solution au problème de
l’optimisation d’un point de vue différent. Nous optimisons des requêtes en
utilisant un ensemble des requêtes pré-calculées (vues matérialisées). Nous
avons développé une plateforme pair-à-pair, qui s’appelle ViP2P (views in
peer-to-peer) qui permet aux utilisateurs de publier des documents XML et
de spécifier des vues sur ces documents en utilisant une langage de motifs
d’arbres. Quand un utilisateur pose une requête, le système essaiera de
trouver des vues qui peuvent être combinées pour construire une réécriture
équivalente à la requête. Nous avons fait des expérimentations en utilisant
des ordinateurs des différents laboratoires en France et nous avons montré
que notre plateforme passe à l’échelle jusqu’à plusieurs GB de données.

iii

Abstract

Internet has led to a fundamental increase of information that is avail-
able to its users over the latest years. The users want to express their needs
by simple means, such as queries and they want their queries to be evaluated
without caring where the data are placed or how the queries are optimized.
The work presented in this thesis contributes to the goal of declarative
and efficient management of Web content in distributed settings and it is
divided into two main chapters. In the first chapter we study OptimAX,
an optimizer for the Active XML language which is able to rewrite a given
Active XML document to an equivalent document which would, very likely,
have smaller execution cost. With OptimAX we focus on the problem of
distributed query optimization in the Active XML setting and we present
two interesting case studies inspired by the R&D projects in which our
group has been involved. In the second chapter, we propose solutions to
the optimization problem from a different perspective. We optimize queries
using a set of precomputed queries (materialized views). We have developed
a peer-to-peer platform, called ViP2P (views in peer-to-peer) that gives to
the users the opportunity to publish their XML documents and to specify
views over these documents using a tree pattern language. Whenever a user
asks a query, the system will try to find views that can be combined in order
to find a rewriting equivalent to the asked query. We have carried WAN
experiments that show the scalability of the ViP2P platform.

v

Contents

1 Introduction 1

2 OptimAX 5
2.1 The AXML language . 6

2.1.1 Documents and services 7
2.1.2 Active XML data . 9
2.1.3 Extension: built-in AXML services and replication . . 11

2.2 AXML activation and optimization problems 13
2.2.1 AXML activation . 13
2.2.2 AXML optimization 15

2.3 an optimizer for AXML . 18
2.3.1 Optimization rules . 19
2.3.2 Implementation issues 24
2.3.3 Search strategies and heuristics 29

2.4 Case studies . 30
2.4.1 Distributed software development in EDOS 31
2.4.2 Warehousing Web data in WebContent 43

2.5 Experimental analysis . 50
2.6 Software architecture design 54

2.6.1 Inside OptimAX . 54
2.6.2 Integrating OptimAX with the AXML peer 60

2.7 Related works . 62
2.8 Conclusion . 63

3 ViP2P - Views in peer-to-peer 65
3.1 Patterns . 67
3.2 Algebraic rewritings using patterns 69

3.2.1 Algebra . 69
3.2.2 Problem statement . 70
3.2.3 Complexity . 72

3.3 Rewriting-based query answering 75
3.3.1 Building a rewriting out of a set of views 75
3.3.2 Rewriting algorithms 78

vii

CONTENTS

3.3.3 Evaluating a rewriting 80
3.4 P2P view management . 80

3.4.1 View materialization 81
3.4.2 Identifying views for rewriting 81

3.5 Performance evaluation . 83
3.5.1 System implementation and configuration 83
3.5.2 Setup for view building and query processing 84
3.5.3 View building . 84
3.5.4 Query evaluation . 84
3.5.5 View indexing and lookup strategies 87
3.5.6 Query rewriting . 89
3.5.7 Conclusions of the experiments 91

3.6 Software architecture design 91
3.7 Related works . 99
3.8 Conclusion . 100

4 Conclusion 101

viii

Chapter 1

Introduction

Internet has led to a fundamental increase of information that is available
to its users over the latest years. Moreover, the number of Internet users is
big and has a tendency to increase even more. This mean of communication
has been used by simple users such as bloggers which are willing to share
their opinion with the Internet community, by readers which would like to
be informed on some of their areas of interest, but also by professional users
such as companies which would like to cooperate or use the Web as an area to
perform their target group research. All these different classes of Web users
share the need to access and propagate the right information. The blogger
needs to make his opinion available to a specific target group, the reader
is always searching for interesting articles from his favorite newspapers, the
companies are constructing their strategy based on information collected by
searching the Web. The plethora and diversity of the available information
makes their task more difficult than it should be. They should be able to
express their need by simple means, such as queries and they should not
worry about how the information will be obtained. Moreover, they want
their task to be executed fast enough but, in the same time, not to worry
about optimization issues. The work presented in this thesis contributes to
this goal: declarative, efficient management of Web content in distributed
settings.

One way of combining information from different sources and performing
computations on them is given by Active XML [23]. Active XML (AXML,
for short), is a declarative framework that harnesses Web services for dis-
tributed data management. The architecture used in AXML is peer-to-peer,
an architecture widely used on the Web. The model is based on AXML
documents. These are XML documents that may contain embedded calls
to Web services and to AXML web services. The latter are Web services
capable of exchanging AXML documents.

An AXML peer is a repository of AXML documents, acting both as a
client by invoking the embedded service calls, and as a server by providing

1

CHAPTER 1. INTRODUCTION

AXML services. The latter services are generally defined as queries or up-
dates over the persistent AXML documents. The approach gracefully com-
bines stored information with data defined in an intensional manner, as well
as dynamic information. This framework can be used to satisfy the needs of
the users that were mentioned before. For example, a user who is interested
in finding the news that his friend has chosen from a specific newspaper,
needs to contact his friend’s AXML peer to get the newspaper’s name and
article ids, and then join these article ids with the ids of the articles that
the newspaper web service will provide. This kind of computations are very
common in the AXML context and are easily expressed withing an AXML
document.

Needless to say, such computations may become very expensive because
of various parameters that can affect a document’s evaluation. Such pa-
rameters are the complexity of queries and the possible use of indices, the
computational power of the peers and their bandwidth, the proximity of the
peers and others. In this context, an optimizer has been developed which,
given an AXML document, statistic information and a proposed strategy,
is going to rewrite the given document into an equivalent document that
will have, very likely, lower execution cost. Chapter 2 presents the AXML
language and the extensions that we bring to it to make it more amenable
to optimization. We formalize the AXML optimization problem, and we
present OptimAX, the optimizer which we have built to solve it. We fur-
thermore present two interesting case studies, inspired from R&D projects in
which the Gemo/IASI group has been involved. The first case study (EDOS)
shows how OptimAX can be used in an unstructured peer-to-peer network,
in a distributed open-source software development architecture. The second
case study (WebContent) shows how OptimAX is used in an already de-
ployed data management project. Last but not least is the presentation of
experimental results.

Apart from the optimization problem in the AXML’s context, we are
interested in query optimization using precomputed queries (materialized
views). We have developed a peer-to-peer platform, called ViP2P (views
in peer-to-peer), that gives to the users the opportunity to publish their
(XML) documents and to specify views over these documents using a tree
pattern language. Views can be queries frequently asked by the users, or
more generally, specify a data need that the user has and which must be met
based on the document present in the network, past, present and future.
ViP2P peers cooperate in an transparent way to the user, to fill in the views
with the needed data. Whenever a user asks a query, the system will silently
try to find new views that can be combined in order to find a rewriting
equivalent to the asked query. The goal of the platform is to provide fast
answers to the asked queries by using the already precomputed results of
materialized views. It should be noted that ViP2P is very useful in cases
where the users want to create a large repository of XML documents. ViP2P

2

was also inspired by the WebContent project mentioned above. WebContent
focuses on giving to the participating companies efficient tools for gathering,
enriching and exploiting structured documents from the Web or produced by
the companies. ViP2P can give the opportunity to the participating peers
to access a structured content warehouse where they can efficiently query
documents used for market analysis or Web intelligence gathering. Chapter 3
presents our platform, shows our solution to the query rewriting problem,
presents algorithms for finding the needed views for the query rewriting and
for view materialization, shows how our platform scales and compares ViP2P
with related work.

In Chapter 4, we conclude by presenting remaining open issues that need
our attention and need further work.

3

CHAPTER 1. INTRODUCTION

4

Chapter 2

OptimAX - An Active XML

optimization framework

This Chapter considers the problem of efficient execution of distributed
Web services. Our solution is based on a composition language, namely
ActiveXML (or AXML in short) [23], which in our setting can be seen as
equivalent to a subset of BPEL. An ActiveXML document is an XML doc-
ument specifying which services to call, how to build their input messages,
and how the calls should be ordered. The contribution of this Chapter is
an AXML optimizer called OptimAX, which given an AXML document,
applies equivalence-preserving rewriting that transforms it into a different
document, producing the same results, but possibly very different in shape
and in the set of services it invokes. Thus, the execution of the rewritten
document is likely to both be faster and consume less CPU resources than
that of the original document.

Following the service-oriented architecture of AXML platform, we have
implemented OptimAX as a Web service which, when invoked with an
AXML document, returns a rewritten document. This step allows to benefit
from the kind of performance-enhancing techniques typically applied in
distributed databases [55], but in a new setting: loosely coupled (vs. tightly
controlled servers), generic (vs. tailored to specific indices and execution
techniques), extensible to any service (vs. limited to the “inside” of the
database server box). Another important difference is that AXML (and
OptimAX) support continuous (streaming) services, such as e.g. RSS feeds.
XML streams are at the core of many modern Web applications, e.g. for
keeping a portal’s content up to date, or for implementing continuous
business interactions in a workflow-style setting.

OptimAX has first been the focus of a demonstration in the French na-
tional database conference [8] (informal proceedings) and then in the ICDE
conference [9]. The full approach been published in [11] and also presented
at [10]. A specific application of OptimAX in the context of the WebContent

5

CHAPTER 2. OPTIMAX

R&D project was demonstrated at the VLDB 2008 conference [1], and will
be discussed in detail in a dedicated Section of this Chapter.

This Chapter is organized as follows. Section 2.1 describes the AXML
language and the extensions we bring to it to enable optimization. Sec-
tion 2.2 formalizes the AXML optimization problem, and Section 2.3
describes our optimizer. Section 2.4 presents two case studies where Op-
timAX is used. Section 2.5 presents experimental results. Section 2.6
analyzes implementation design decisions. In Section 2.7, based on our
problem analysis (Section 2.2), we classify and compare this work with
previous related AXML works and with the state of the art. Finally in
Section 2.8 we conclude.

Writing conventions Throughout this thesis we will use a set of typo-
graphic conventions which we list here:

– XML documents are depicted in sans serif font, e.g. 〈document〉 content

〈/document〉

– XML queries expressed in XPath or XQuery are shown in typewriter
font, e.g. /document//paragraph

2.1 The AXML language

To introduce the AXML language, we use the following alphabets: a set
P of peer names, a set D of document names, a set S of service names, a set
N of node identifiers (for the XML tree nodes), and a set L of labels (for the
XML tree tags). All peer names are distinct, thus they also serve as peer
identifiers (or IDs in short). Document and service names are unique inside
each peer, and they also serve as document/service address. The triple (peer
name, document name, node identifier), suffices to identify a node, there-
fore we term it node ID, or node address. We may omit the document or
peer when it is obvious from the context. Elements in the sets P,D,S,N ,L
are respectively denoted p, d, s, n and l, possibly with adornments such as
subscripts or primes. Trees are denoted by the letter t, possibly with adorn-
ments. For sets, we use capital letters. By convention, we prefix node IDs
with ♯.

Intuitively, a peer represents a context of computation; we make no as-
sumption about how the peers are logically connected, i.e. whether the peer
network is structured or not.

Section 2.1.1 makes an introduction to XML documents and services.
Section 2.1.2 makes an introduction to AXML and to activation order of
service calls. Finally Section 2.1.3 presents our extensions to the AXML
language.

6

2.1. THE AXML LANGUAGE

2.1.1 Documents and services

We view an XML tree as a pair of E ⊆ N ×N , and a labeling function
λ from the nodes in E to L. Using the standard XML syntax, a sample
XML tree t is:

〈person id="#5"〉

〈email〉jdoe@ms.com〈/email〉

〈first〉john〈/first〉

〈last〉doe〈/last〉

〈/person〉

In this example, the node identifier #5 is depicted as an attribute. An XML
document is a pair (t, d) where t is an XML tree and d ∈ D; we may refer
to it by d. A given document d, resp. service s, on a peer p is denoted d@p,
resp. s@p.

Deterministic services We consider deterministic services, returning the
same answer when invoked with the same parameters. In a Web environment,
we may allow “relatively slow” variations in call results, and consider the
answers at time t and t + ǫ, for some small ǫ, to be equally acceptable. In
its simplest form, a service can be seen as a function with XML inputs and
outputs, in the style of the request-response operation [56].

Continuous services Within the class of deterministic services, without
loss of generality, we consider continuous services that work on streams of
trees and start processing their input incrementally, before it has been fully
received. A particular class of continuous service have no inputs and emit a
stream of XML trees. This corresponds to an XML subscription, in the style
of RSS. Observe that a non-continuous service can be seen as a particular
case of continuous service, whose answer stream always includes only one
tree.

Let s be a service with n inputs. When the service is running, it expects
to receive a stream of XML trees for each input. Any stream finishes with
a special token denoted eof, that no tree may follow. Trees can arrive in
all inputs in parallel. When a tree is received in one input, the service may
perform an internal computation and/or may output zero or more trees.

Distributive services Among deterministic, continuous query services,
of particular interest to us are distributive services, characterized as follows.
Assume the service has n XML input streams. The service is said distribu-
tive if, for each 1 ≤ i ≤ n, and for any finite streams T1, . . . , T

′
i , T

′′
i , . . . , Tn,

the following holds:

7

CHAPTER 2. OPTIMAX

s(T1, . . . , (T
′
i + T ′′

i), . . . , Tn) = s(T1, . . . , T
′
i , . . . , Tn) + s(T1, . . . , T

′′
i , . . . , Tn)

where + stands for stream concatenation.
An important class of distributive services comprises those defined by

parameterized XPath queries of the form $in//PE where $in is a variable
to be dynamically bound at evaluation time, to a list of nodes (typically
designated as the dynamic context of the query). A very similar class of
distributive queries consists of XQuery queries having some variables in the
outermost for clause iterate over such a context list.

Example Consider a query service qs1 defined by the following query q1:

for $x in $in1, $y in $in2

where $x/b=$y/b

return 〈z〉{x/a}〈/z〉

The query is distributive over both its inputs, materialized by the lists $in1

and $in2. A possible sequence of inputs and outputs for this service is
rendered in the following table. The values in the leftmost column represent
discrete time moments; the other columns depict possible inputs and outputs
of the service, occurring at the respective moments in time.

time $in1 $in2 result

1 〈x〉〈a〉0〈/a〉〈b〉1〈/b〉〈/x〉 〈y〉〈b〉0〈/b〉〈/y〉

2 〈y〉〈b〉1〈/b〉〈/y〉 〈z〉〈a〉0〈/a〉〈/z〉

3 〈y〉〈b〉2〈/b〉〈/y〉

4 〈x〉〈a〉3〈/a〉〈b〉0〈/b〉〈/x〉 〈z〉〈a〉3〈/a〉〈/z〉

The service qs1 defined by the query q1 is a distributive service, with two
parameters (or inputs). When the service is invoked with two actual XML
streams xs1 and xs2 as inputs, the query will be evaluated by binding suc-
cessively $in1 to each tree in the stream xs1, and $in2 to each tree in the
stream xs2.

Generic query service To simplify the usage of services defined by declar-
ative, continuous, distributive queries, we consider a generic query service,
denoted gqs, and defined as follows. Its first parameter is a string, more
precisely, a query expressed in distributive XPath or XQuery. Let n be the
number of unbound variables (thus, input streams) in this query. The generic
query service accepts n more parameters, which are treated as XML streams,
and evaluates the query specified by the first parameter, over the remaining
parameters.

8

2.1. THE AXML LANGUAGE

Example Let s be the string containing the query q1 of the previous exam-
ple. As before, let xs1 and xs2 be two XML streams. A call to the sevice
gqs(s, xs1, xs2) has exactly the same effects as the call to qs1(xs1, xs2), where
qs1 is the query service of the previous example, implemented by the specific
query q1.

2.1.2 Active XML data

An AXML document is an XML document where some nodes labeled
with the label sc (standing for service call) are given particular semantics.
Specifically, an sc node has:

– Two children, labeled peer and service, specify a peer name p1 ∈ P and
a service name s1 ∈ S, where s1@p1 identifies an existing Web service.

– A set of children labeled param specify the parameters.
Let d0@p0 be an AXML document containing a service call to a service

s1@p1 as above. When the call is activated, the following sequence of steps
takes place:

1. p0 sends a copy of the param-labeled children of the sc node, to peer
p1, asking it to evaluate s1 on these parameters;

2. p1 evaluates s1 on this input;

3. a copy of the result is inserted as a sibling of the sc node.

When a continuous service call is activated, step 1 above takes place
just once, while steps 2 and 3, together, occur repeatedly starting from that
moment. The response trees successively sent by p1 accumulate as siblings
of the sc node.

Observe that sc nodes may appear as children of other sc nodes. More-
over, the results of an activated service call may contain other service calls.

AXML supports several mechanisms for deciding when to activate a ser-
vice call. One may explicitly request each call activation. For instance,
consider a service call sc2(sc1), i.e. sc1 is a parameter of sc2. The user may
choose to activate just sc2, in this case the sc1 element as such is used as a
parameter for sc2. The call sc1 may be activated in the future.

Another more frequent case occurs when users want to activate all the
necessary service calls to bring the document to a certain state. For instance,
before sending a document d to a partner that does not understand AXML,
we need to activate all the calls in d, the calls which may be received in their
results, and so on. Or, it may be necessary to bring d to a given (A)XML
type by selectively activating some calls only; algorithms to find these calls
are given in [14].

In this work, we define a simple, yet flexible approach for deciding when
to activate calls. This approach is based on a set of default activation order

9

CHAPTER 2. OPTIMAX

(dao1) A call sc1 which is a parameter of sc2 is activated before sc2.
(eao1) A call sc1 having an afterActivated attribute whose value is

the ID of another call sc2 is activated after sc2 has been
activated.

(eao2) A call sc1 having an afterTerminated attribute whose value is
the ID of a call sc2 is activated after sc2 has terminated its
execution.

(dao2) A call to the service send@p is activated before all the service
calls comprised in its parameters have been activated.

(dao3) A call to the service receive@p is activated when the first
message from the corresponding send@p′ call reaches p.

(noa1) Let sc be a call to send@p, in some document d@p. After
activating sc, the descendant calls of sc are never activated
(at p).

(dao4) A call to newnode is activated before all its descendant calls.
(noa2) After a call to newnode has been activated, its descendant

calls are never activated at the original peer.

Table 2.1: Activation order rules.

constraints, which apply by default, and on some explicit activation order
constraints, which can be manipulated by the user.

The first default activation order rule is dao1 in Table 2.1. The reason
for this rule is that a majority of the services available today require plain
XML inputs and return plain XML outputs. Activating the inner call
first is more likely to lead to call sc2 with XML input. Rule dao1 cannot
influence the activation order of two calls when none is an ancestor of the
other. To capture such constraints, we enable users to specify that a given
service call should be activated only after another call’s activation and more
precisely, after receiving the first answer of that service. Moreover, for
continuous services, we may wish to distinguish between activating service
call sc1 after sc2 has been activated (but has not finished executing), and
activating sc1 after sc2 has been activated and has finished, i.e. it has sent
its eof . Syntactically, such constraints are expressed using two attributes
afterActivated and afterTerminated, whose interpretation is provided by the
rules eao1 and eao2 in Table 2.1.

Sample activation order Figure 2.1 depicts a simple AXML document at
peer p0, and Figure 2.2 shows a possible timeline of the activations of its
calls. The period between the activation and termination of each service is
shown by a horizontal bar.

10

2.1. THE AXML LANGUAGE

〈doc〉

〈sc service=”f@p1” id=”#1” afterTerminated=”#4”〉

〈par〉〈sc service=”h@p2” id=”#2”/〉〈/par〉

〈par〉〈sc service=”k@p3” id=”#3”/〉〈/par〉

〈/sc〉

〈sc service=”g@p4” id=”#4”〉

〈par〉〈sc service=” j@p2” id=”#5” afterActivated=”#4”/〉〈/par〉

〈/sc〉

〈/doc〉

Figure 2.1: Sample AXML document.

f@p1

h@p2

j@p2

g@p4

k@p3

Figure 2.2: Timeline for service call activation.

2.1.3 Extension: built-in AXML services and replication

To the basic AXML model above, we add a small set of predefined ser-
vices, which we assume available on all peers.

Send and receive are two services used to send (streams of) XML data
from one place to another. The send service has two parameters. The what
parameter represents the data to be sent from one site to another. This may
be plain XML, some service calls or references to service calls. The where
parameter is a node ID. The receive service has one from parameter which
is a node ID. The following integrity constraint applies: for each call to a
send service, there is exactly one call to a receive service, such that the
value of the where child of the send call is the ID of the receive call, and
the value of the from child of the receive call is the ID of the send call.

One of the main applications of send and receive concerns the sending
of data streams, as Figure 2.3 illustrates. Consider for now only the XML
content shown in upright part of the table. The document doc1@p1 contains
a call to the local service send@p1, with a call to f@p3 as parameter. The
destination address is the node identified by (p2, doc2,#3), which is the call
to receive. Once the call to f@p3 is activated, it returns fres elements
shown in italic font in doc1.xml in Figure 2.3; activating the calls to send

11

CHAPTER 2. OPTIMAX

doc1

@p1

〈doc〉

〈sc service=”send@p1” id=”1”〉

〈what〉

〈sc service=”f@p3” id=”2”/〉

〈fres〉1〈/fres〉

〈fres〉2〈/fres〉

〈/what〉

〈where〉p2.doc2.#3〈/where〉

〈/sc〉

〈/doc〉

doc2

@p2

〈doc〉

〈sc service=”receive@p2” id=”3”〉

〈from〉p1.doc1.#1〈/from〉

〈/sc〉

〈fres〉1〈/fres〉

〈/doc〉

Figure 2.3: Sample activation of calls to send and receive.

and receive transmits these elements into the document doc2@p2. In the
Figure, the last element has not yet arrived in doc2.xml.

A call to send@p or receive@p can only be activated when the call is in a
document at peer p. This is a syntactic simplification only; we will show that
it is possible for a peer p to trigger the sending of some data from another
peer p′.

The introduction of the send and receive services requires new activation
order rules, namely dao2, dao3 and noa1 in Table 2.1. Rule dao2 specifies
that by default, send distributes the computation (not its result). Rule
dao3 shows that receive calls are not activated individually but only as a
consequence of receiving a message. Finally, the no activation rule noa1
states that if a service call sc is sent from p to p′ by a send, sc is not be
evaluated at p.

The newnode service installs new AXML trees on a peer. It has a
single what parameter, which is an AXML tree. Activating the call to
newnode@p(t) creates a new document at peer p, whose associated data
tree is t. The service returns the identifier of the new document’s root.
Observe that newnode is quite powerful, since it enables the distribution of
data and computations among peers.

The activation order rules dao4 and noa2 apply to calls to newnode. Rule
dao4 favors distribution, i.e. it causes AXML code to be sent before being
activated. The no-activation rule noa2 is similar to noa1.

12

2.2. AXML ACTIVATION AND OPTIMIZATION PROBLEMS

Activation order, putting it all together: Together, rules dao1, dao2,
dao3 and dao4 provide the default evaluation order for service calls appearing
in AXML documents. These rules cannot cause cyclic dependencies. Explicit
order constraints (eao1, eao2) override the default rules, and may introduce
cycles. Documents with cyclic constraints are invalid and we do not consider
them further.

Activation schedule Let d be a document and sc1, sc2, . . . , sck be the ser-
vice calls from d. An activation schedule (or schedule, in short) for S is a
list of pairs [(sc1, τ1), (sc2, τ2), . . . , (sck, τk)] such that for 1 ≤ i ≤ k, τi is a
moment in time, sc1 is activated at the moment τ1, sc2 is activated at the
moment τ2 etc. The schedule is said valid iff it respects: (i) all the eao1
and eao2 constraints of d; and (ii) as many of the dao1 − dao4 constraints
as possible without violating the (eao1) and (eao2) constraints.

Observe that valid schedules largely allow parallel activation of contin-
uous services (the only limitation being the explicit use of afterTerminated).
The activation order example of subsection 2.1.2 illustrates a valid schedule.
We focus on valid ones from now on.

Replication We assume that some AXML documents may be replicas (or
copies) of each other, and similarly services may be replicated. A most
important example for us is a query service. Given the string of the query,
any peer equipped with a query processor can provide this query as a service,
and all such services are equivalent. Observe that different copies of the same
document may evolve independently with time, however, they will eventually
reach the same state.

Formally, we consider an abstract peer, called any, and use d@any to
refer to any of the replicas of d, and similarly for services. We assume that
each peer is able to identify one of the concrete resources corresponding
to d@any or s@any. For instance, an approach based on semantic service
matching is provided in [25].

2.2 AXML activation and optimization problems

Having introduced AXML, we now chart several interesting problems
which arise in this setting and we show how they relate to each other in
Section 2.2.1. We pinpoint the specific optimization problem addressed in
this thesis in Section 2.2.2.

2.2.1 AXML activation

Given an AXML document d, we denote by SC(d) the set of service
calls in the document. Observe that SC(d) may grow with time, as results

13

CHAPTER 2. OPTIMAX

(including sc elements) are added to the document. In principle, SC(d)
may grow to be infinite, e.g. consider a call to a service f@p that returns
exactly one call to f@p. We consider the practical setting when the size of
SC(d) is bounded.

Cost of an activation Let d@p0 be an AXML document and sc ∈ SC(d)
be a call to f@p. The cost of activating sc is defined as:

c(sc) = α× cf + β × (sp/bwp0→p + sf/bwp→p0)

where: α and β are some numerical weights; cf is the cost associated to
the computation of f at the peer p; bwp→p0 and bwp0→p, respectively, are
the bandwidths from p to p0, respectively from p0 to p; sp is the size of the
parameters of the calls to f@p; sf is the size of the results produced by the
calls to f@p. Observe that this cost model is concentrated on total work
and not in response time.

We focus on activations with a finite cost, which requires that cf , sp and
sf be finite; the latter implies that f returns a finite number of answers. (A
simple extensions to infinite streams would consider the cost per tree in the
stream.) If p is any, then c(sc) is set to an upper bound constant max.

We define the cost of an activation schedule as the sum of the activation
cost of all the calls in the schedule. While a schedule describes very precisely
a given AXML computation, we would like to consider activation costs
independently of the particular moment when each call is activated. To that
effect, we introduce the following definition.

Equivalent schedules Let d be an AXML document and T1, T2 be two
schedules over two sets of services S1, S2 ⊆ SC(d). We say the schedules are
equivalent, denoted T1 ≡ T2, iff applying T1, resp. T2 on the document leads
to documents that are equal.

Note that S1 and S2 may or may not coincide, as shown in the following
example.

Empty-result call Let T1 a schedule over S1 ⊆ SC(d). Assume that for
some sc ∈ S1, it is known that activating sc does not bring results other than
eof . Let S2 = S1 \ {sc} and T2 the restriction of T1 to S2, then T1 and T2

are equivalent (modulo eof , which we ignore by a mild abuse of terminology).

Valid schedule equivalence Let d be an AXML document and S ⊆ SC(d)
be a set of service calls from d. All valid schedules for S are equivalent and
have the same cost.

14

2.2. AXML ACTIVATION AND OPTIMIZATION PROBLEMS

Intuitively, valid schedules are equivalent due to the distributive, deter-
ministic services which, called with the same parameters, produce the same
results, even if some streams are created at different moments and progress
at different rates in different schedules. They have the same cost because
our cost model focuses on the total work, which does not change with time.

Set activation Let d be an AXML document and S ⊆ SC(d). We term set
activation of S on d the execution of any valid schedule for S. The cost of
the activation is the cost of any valid schedule for S.

We term one-stage activation of d the set activation of all calls in SC(d).
If a call in SC(d) returns another call sc′, the latter is not activated in this
stage.

We now consider the process of activating all calls in an AXML document
until the document reaches a stationary state. Under the assumptions made
here (the number of service calls in d is bounded, and services return finite
streams), the fixed point state is finite, which entails that after a while, no
new calls are returned by running service calls.

Full schedule Let d be an AXML document and SC0 be the initial set of
service calls in d. Let SC1 be the service calls returned by the set activation
of SC0, and similarly, for i = 2, . . . , k, let SCi+1 be the set of service calls
returned by the set activation of SCi. (We chose k so that SCk 6= ∅ and
SCk+1 = ∅). A full schedule for d is a schedule for all the calls in

⋃
0≤i≤k SCi,

such that:
– The restriction of the schedule to SCi, for any 0 ≤ i ≤ k, is valid.
– Whenever a call sci returned a call scj , sci appears before scj in the

schedule.
Observe that in a full schedule, calls need not appear in the order in

which they appeared in d: a call from SC0 may be activated after a call
from SC5.

As before, all full schedules of d are equivalent and have the same cost.
We define the full activation of d as the execution of any full schedule of d.
If all services return plain XML data, full and one-stage activation coincide.

In practice, in one-stage full activation, our engine makes a best effort at-
tempt to trigger activations as soon as the schedule permits. This is likely to
favor parallelism but only applies after the total work oriented optimization.

2.2.2 AXML optimization

We now consider the problem of AXML optimization, focusing first on a
restricted version of the problem, which we call one-stage optimization.

15

CHAPTER 2. OPTIMAX

One-stage optimization Let d be an AXML document and S ⊆ SC(d) a
subset of the calls in d. The process of one-stage optimization for d consist
of finding a document d′ such that:

– one-stage activation of d and d′ produce identical documents (up to
terminated service calls and their subtrees);

– the cost of the set activation of d′ is smaller than, or equal to that of
d.

Observe that optimization, as defined above, is a static process, which
does not involve call activations. We say that optimization is exhaustive
if it produces a document d′ with the minimum cost among all documents
equivalent to d.

Let us now consider the integration of optimization in a full evaluation
process, where we have to activate the calls in d, then the possible calls in
their results etc. The choice of when and how often to invoke the optimizer
impacts the rewritings it may find, thus the full activation cost. The main
reason is that the optimizer decides to rewrite the document based on
the service calls it contains at optimization time, and the latter change as
activation proceeds. To characterize the goal of optimization, we define:

Document equivalence Let d@p, d′@p be two documents at the same peer.
We say d and d′ are equivalent, denoted d ≡ d′, if the result of full activation
of d and d′ coincide. This means that after full activation, the documents
should be identical apart from terminated service calls and their subtrees.
We do not compare these nodes during the equivalence test because:

– the test focuses on the produced data after a full activation and ter-
minated service calls can not produce any more data;

– the children of the service calls are their parameters. Two seemingly
different service calls with different parameters may produce the same
results.

This notion of equivalence characterizes documents that are eventually
equal after their full activation. The documents may go through different
states during the process, may call services from different peers etc. From
the perspective of the user requiring the full activation result of d@p, the
result of d′@p is the same. From the system perspective, given a document
d, optimization can be seen as repeatedly replacing d with d′, where d ≡ d′,
and finally retaining, from the total set of explored documents, the one
having the minimum cost.

Full optimization Let d be an AXML document and R a set of rules. The
full optimization problem for d consists of finding a sequence of steps chosen
among:

– pick a service call currently in d which can be activated according to
the ordering constraints of d, and activate it

16

2.2. AXML ACTIVATION AND OPTIMIZATION PROBLEMS

– replace d with another document d′ such as d ≡ d′

until all services calls in d have been activated, such that the total acti-
vation cost (including the past and possibly future service call activations)
plus the total cost of optimization is the smallest among all possible such
sequences of steps. Without loss of generality, we can consider that each
document replacement step mentioned above can be performed in a time
interval bounded by some constant value co.

Observe that the full optimization problem is more complex than just
inserting optimization steps on some places into a given full schedule, be-
cause optimization may remove or add service calls, leading to re-scheduling.

Two cases can be distinguished:

1. If all service calls return plain XML results, then invoking the optimizer
only once, prior to any activation, solves the full optimization problem.

2. If service calls are allowed to return any AXML trees with service calls,
the problem is undecidable. The intuition for this is the following. Op-
timizing too rarely may lead to poor activation decisions, which could
have been avoided if we had chosen to invoke the optimizer more often.
Optimizing too often, on the other hand, may also be suboptimal. For
instance, the optimizer may rewrite a subtree t of d into t′, instead
of waiting for some more activations which may have produced, say,
a subtree t′′ of d, such that considering t and t′′ together enables a
big cost-saving rewriting, which cannot be applied based on t′ and t′′.
Thus, one can exhibit a document when optimizing before each call
activation, even assuming co = 0, is suboptimal. Moreover, in reality,
co 6= 0, thus very frequent optimization is impractical.

At this point, we consider concrete means of moving from one document
d to an equivalent document d′ as mentioned above. Our practical solution
for moving from one document to another is to use a specific set of already
know rules.

Template A template templ is an XML tree pattern. Its nodes share
the same label set L with the Active XML documents, are connected with
parent-child edges and form a tree-like structure. Some of the nodes are
characterised as variables and there can be preconditions on this variables
that should be satisfied.

Template matching Given a template templ and a document d, we call
template matching a mapping h : templ→ d from the nodes of templ to the
nodes of d such that:

– h preserves node labels: ∀u, u and h(u) have the same label or u is a
variable and its preconditions are satisfied;

17

CHAPTER 2. OPTIMAX

– h preserves structural relationships: ∀u : u father of v, then h(u) is
father of h(v) and ∀u : u ancestor of v, h(u) is ancestor of h(v).

Document transformation Let:
– templ1, templ2 be two templates;
– cond1 be the precondition set on the variables of templ1 and that these

preconditions are satisfied;
– a relation 1-to-many that maps each of the variables of templ1 to the

variables of templ2;
– d a document and h a mapping such that templ→ d;
– r be the root of templ1.

We call document transformation of d to d′ the following actions:
– deletion of the subtree rooted by h(r) from d;
– addition of the templ2 as child of h(r);
– copy of the variable contents from templ1 to templ2 based on the 1-

to-many variable mapping.
Rule-based optimization A rule R is a tuple of the form (aR, condR, a

′
R)

such that:
– aR, a′R are XML tree templates, as defined above;
– condR is a precondition to be satisfied by the aR subtree and further

preconditions which are rule specific.
Let d be an XML document, n be a node in d and R be a rule. Assuming

that n matches a, and that precondition condR(n) holds, applying R to d
yields a document d′ in which the subtree rooted in n has been replaced by
the subtree obtained by applying the a′ template on n.

In the sequel we focus on one-stage optimization whose details will be
described in the following Sections. In the full evaluation setting, we rec-
ommend invoking the optimizer once on the initial set of services SC0, then
on SC1, then on SC2 and so forth, a heuristic which we find a reasonable
compromise.

2.3 OptimAX: a parametric rule-based optimizer

for AXML

A question that rises is how, from a set of rules, we lead to the complete
search space. The solution is not as simple as applying the right set of
rules at the right order but also avoiding problems that may occur during
the search space exploration. In this Section we present the optimization
rules that are used by our optimizer in Section 2.3.1. We then describe the
various problems that we encountered while implementing the optimizer and
how they were addressed in Section 2.3.2. In Section 2.3.3 we discuss possible
search strategies and heuristics to be used during optimization.

Clearly, many equivalence-preserving rules can be considered and based
on any given set of rules R, multiple optimization avenues are open. In the

18

2.3. AN OPTIMIZER FOR AXML

〈a〉

〈sc service=”f@p1” 〉α〈/sc〉

〈/a〉

⇓
〈a〉

〈sc service=”receive@p0” id=”1”〉

〈from〉#2〈/from〉〈/sc〉

〈/sc〉

〈sc service=”newnode@p2”〉

〈sc service=”send@p2” id=”2”〉

〈what〉

〈sc service=”f@p1”〉α〈/sc〉

〈/what〉

〈where〉#1〈/where〉

〈/sc〉

〈/sc〉

〈/a〉

Figure 2.4: Delegation rule.

sequel of this Section, we will present a set of general and helpful rules,
including some which we used in applications encountered in two R&D
projects to which we participated. The complete search space is the set of
distinct documents obtained by repeatedly applying a set of rewriting rules
which we describe next. They all preserve AXML equivalence as defined in
Section 2.2.2.

Search space for a given rule set Given a set of rules R and a document
d, the search space determined by R is the set of all documents d′ obtained
by applying on d a finite sequence of rewriting rules from R.

In the sequel, we will consider the topic of building an optimizer capable
of exploring the complete search space corresponding to any given rule set
R, as well as some heuristics adapted to a specific set of rules, which enable
obtaining good cost reductions without requiring the exploration of the full
search space.

2.3.1 Optimization rules

Delegation The rule is depicted in Figure 2.4. In this Figure, and in the
following similar ones, the upper box shows a template XML document be-
fore applying the rule, while the lower box represents the same document on
which the rule has been applied.

19

CHAPTER 2. OPTIMAX

〈a〉

α

〈b id=”1”〉β〈/b〉

〈c id=”2”〉γ〈/c〉

δ

〈/a〉

⇓
〈a〉

α

〈b id=”1”〉β〈/b〉

〈sc service=”send@p0” id=”3”〉

〈what〉#1〈/what〉

〈where〉#4〈/where〉

〈/sc〉

〈c id=”2”〉

〈sc service=”receive@p0” id=”4”〉

〈from〉#3〈/from〉

〈/sc〉

〈/c〉

δ

〈/a〉

Figure 2.5: Factorization rule.

The delegation rule distributes computations across sites. The rule in-
troduces three new service calls to send, receive and newnode. The effect
is to install at p2 an AXML document (via newnode), such that the call to
f@p1 will be performed from that document, i.e. from p2, not from p0. As
soon as f results start accumulating at p2, the send call will transmit them
to the receive call at the original peer p0, bringing thus the results in the
original document.

The delegation rule may reduce costs by cutting down data transfers.
For instance, assume that p1 = p2 and the call to f had as parameter a
call to g@p1. In this case, activating the upper document would transit the
results of g@p1 from p1 to p0 and then back from p0 to p1. The lower plan
eliminates these needless transfers.

Factorization The factorization rule is depicted in Figure 2.5. In this Fig-
ure, β and γ are two sets of AXML trees, such that each tree in β is equivalent
(as defined in Section 2.2.2) to some tree in γ and vice-versa. This rule elim-
inates redundant computations. Detecting the equivalence of two AXML
trees is, in the general, a hard problem. We adopt a simple, conservative es-
timation of this test, which will be described in Section 2.3.2. Our method is

20

2.3. AN OPTIMIZER FOR AXML

〈sc service=”f@any”〉α〈/sc〉

m
〈sc service=”f@p”〉α〈/sc〉

Figure 2.6: Instantiation/Generalization rule.

conservative, in the sense that if two forests β and γ are recognized as equiv-
alent, then this is indeed the case. However, our method is not complete, in
the sense that it may fail to detect equivalence in some cases.

The factorization rule replaces γ with a pair of calls to send and receive,
which copy β as children of c, effectively in replacement of γ. If γ contained
service calls, the rewritten document reduces the actual activated calls and
(if the services were on remote peers) also reduces inter-peer transfers. The
rewritten document requires a local copy of data from the b to the c element,
but such transfers are likely less costly (and our cost formula ignores them).

Instantiation/Generalization This rule is depicted in Figure 2.6. Let p
be one of the peers providing f . This rule turns an abstract service call to
f@any into a concrete call to f@p. Moreover, it can change a concrete call
to f@p to an abstract service call to f@any, if it knows that f is an abstract
service.

Recall from Section 2.2.1 that OptimAX’ cost model assigns maximum
cost to the activation of calls at any. As a consequence, applying the instan-
tiation rule always reduces cost. Moreover, when several peers provide f ,
different cost reductions can be obtained. Documents with calls to services
@any give more options to the optimizer. When services are queries (Sec-
tion 2.1.1), plans produced by instantiation resemble distributed strategies
in mediator systems [55].

Generalization is needed when there is a concrete call f@pold of an
abstract service f which is costly. In this case, to minimize execution cost,
a generalization (f@any) and a instantiation (f@pnew), selecting the right
peer, are needed.

Query composition/decomposition The query composition/decomposition
rule is shown in Figure 2.7. The rule focuses on calls to services implemented
by XML queries, such as q, q1 and q2 in the Figure. These queries are such
that q ≡ q1(q2), i.e. for any XML input t, q(t) = q1(q2(t)). The upper
document calls the query q, while the lower document nests the call to q2
as a parameter of the call to q1. In this rule, p can also be any. Query
composition (going from the lower part to the upper part in Figure 2.7)
reduces costs by cutting the overhead of one activation.

21

CHAPTER 2. OPTIMAX

〈sc service=”query@p”〉

〈query〉q〈/query〉

〈input〉α〈/input〉

〈/sc〉

m
〈sc service=”query@p”〉

〈query〉q1〈/query〉

〈input〉

〈sc service=”query@p”〉

〈query〉q2〈/query〉

〈input〉α〈/input〉

〈/sc〉

〈/input〉

〈/sc〉

Figure 2.7: Query (de)composition rule.

α〈sc〉β〈/sc〉γ

⇓
αγ

Figure 2.8: Useless call elimination rule.

Query decomposition (going from the upper part to the lower part) may
reduce costs if the sub-queries q1, q2 can be handled very efficiently by some
processor unable to handle the full query q. For example, q1 may be an
XPath query which may be answered using an index [5], and q2 is an XML
construction query applying on the results of q1.

More generally, the query decomposition rule applies for any queries
q, q1, . . . , qn such that q ≡ q1(q2, . . . , qk). The rule de facto integrates XML
query optimization as a sub-problem of the larger AXML optimization prob-
lem.

Useless call elimination The useless call elimination rule is shown in Fig-
ure 2.8. This rule eliminates calls with anticipated empty results (recall the
example for the empty result call in Section 2.2.1).

Flattening rule This last rule highlights an interesting interplay between
XML queries and the AXML formalism. The rule is illustrated in Figure 2.9.
In the document at the top of the Figure appears a call to the generic query
service (gqs) that we have introduced in Section 2.1. The gqs must evaluate
a query of the form q1(document(q2)); What is important here is that the data

22

2.3. AN OPTIMIZER FOR AXML

〈sc〉 gsq(q1(document(q2)) 〈/sc〉

⇓
〈container〉

〈sc id=”#1”〉gsq(q2)〈/sc〉

〈/container〉

〈sc buildGSC afterActivated=”#1” 〉

〈param〉 ../container/* 〈/param〉

〈param〉 q1 〈/param〉

〈/sc〉

Figure 2.9: Flattening rule.

source on which the query applies is not known, but must be determined by
evaluating a sub-query q2, before one can actually evaluate q1.

The purpose of the rule is to decompose the query expression q1(document(q2)),
using AXML. To that purpose, two calls are introduced in the document at
the bottom of Figure 2.9:

– The first call has the id #1 and it adds in the document the list of doc-
ument URIs resulting from the evaluation of q2. The rule encapsulates
these URIs as children of a new 〈container〉 element.

– The second call invokes the built-in buildGSC service, which builds
generic service calls. The service is continuous, and it has two pa-
rameters. The first parameter must be instantiated to a stream of
document URIs. The second parameter must be instantiated into a
stream of queries. For each given document URIs and query string,
buildGSC returns a service call element, which will be added as a sib-
ling of the call to buildGSC, in usual AXML fashion.
The call to buildGSC must be activated after the document URIs start
arriving, thus, after the service identified by #1.

The flattening rule moves the data dependency of q1 on q2, from the
level of the XQuery expression q1(document(q2)), to the level of AXML. The
interest of the rule is that first, q2 can be optimized in itself using the other
AXML/XQuery optimization rules, and second, the remainder query part,
namely q1, is brought to a simpler form of gqs calls, which also lend them-
selves to optimization.

For readability, we introduced the buildGSC service when present-
ing the flattening rule. However, buildGSC is nothing but a partic-
ular usage of the generic query service gqs. More precisely, a call of
the form buildGSC($in1, $in2) is in fact realized as a call of the form
gqs(qgsc, $in1, $in2), where qgsc($in1, $in2) is the following XQuery query:

23

CHAPTER 2. OPTIMAX

for $x in $in1, $y in $in2

return 〈sc gqs@any〉 〈document〉{$x}〈/document〉 〈query〉{$y}〈/query〉 〈/sc〉

Since XML queries build XML results, and XML results may include
service calls, it is possible using AXML to write code that will modify itself
– a rather powerful language property.

Finally, observe that the query ../container/* appearing in a parameter
in the lower part of Figure 2.9 can be evaluated by another call to gqs, over
the document itself (to find the URIs returned by q2). We omit the details.

Estimating the rule-based optimization search space Let d be a docu-
ment such that all calls in SC(d) refer to specific peers (not any) and assume
delegation is the only rule. Let P be a set of peers known to the optimizer.
Each call can be delegated to each p ∈ P , leading to a search space of size
|SC(d)||P |. On the contrary, assume now that all calls in SC(d) refer to
any and enable instantiation: the size grows to |SC(d)|2|P |. The impact of
the other rules described above is more difficult to quantify since it depends
heavily on the document. In any case, exhaustive search may be quite costly.
Other optimization techniques, like divide and conquer [45] are not optimal
in the presence of factorization.

2.3.2 Implementation issues

OptimAX is implemented in Java and integrated with the recent v.2 of
the AXML engine [23]. This version relies on an XQuery-compliant database
(eXist [59]) to store and update AXML documents, enabling it to scale
up; the previous AXML engine was limited by its in-memory, DOM-based
document management. Axis2 [22], which is an implementation by Apache
Software Foundation of the SOAP protocol [57], is used for Web service
messaging. The activation order constraints described in Section 2.1.2, and
continuous query services as described in Section 2.1.1 were specified and
implemented in AXML v2 as part of the optimizer integration effort. We
discuss here some notable engineering issues.

Detecting tree equivalence We consider the limited case when equivalence
of two AXML tree is detected by checking two-way containment mappings.
The condition is sufficient but is not necessary.

This check is performed at optimization time between two unevaluated
trees, t1 and t2. A containment mapping h from a t1 to t2 is a mapping from
the nodes of t1 to the nodes of t2 such that:

– h preserves node types: ∀n, n and h(n) describe the same data or
service call node;

– h preserves structural relationships: whenever n is a child of m in t1,
h(n) is a child of h(m) in t2;

24

2.3. AN OPTIMIZER FOR AXML

Figure 2.10: Confluence example.

– h preserves activation order constraints: for every activation constraint
constr that exists at t1 between service sc1 and sc2, there exists a
constr′ of the same type between h(sc1) and h(sc2) at t2.

To make the above comparison efficient, each node carries a hash code
describing itself and its descendants. Whenever we want to compare two
subtrees, firstly we compare their hash codes and only if they are equal, we
proceed to the above detailed check.

Detecting loops The first and the most common problem that appears are
loops during the search space exploration. The loops are due to the presence
of bi-directional rules, such as instantiation/generalization and query compo-
sition/decomposition. For example, consider a document d and assume that
the decomposition rule can be applied to service call sc of d which results to
its decomposition to sc1 and sc2. Continuing the optimization process with
the resulting document d′, we apply the composition rule trying to compose
the service calls sc1 and sc2 to one service. As we can imagine the resulting
service call will be the original sc and the new document d′′ will be equal to
d.

The solution is to keep track of the documents that we have visited, in
order to know when we visit a document for a second time.

Confluence Another problem that appears very often is the problem of con-
fluence, illustrated by the sketch in Figure 2.10. When various optimization
rules commute, we may reach the same document using different optimiza-
tion paths. For example, in Figure 2.10 we reach document d2 from d0 by
following the upper path and applying first R1 and then R2. Thereafter, we
may reach it a second time by following the lower path and applying first
R2 and then R1. When visiting for first time document d2, we will continue
its optimization, if needed. However, in the following visits we should detect
that this document has been already visited and processed and we should
not proceed to any further processing.

25

CHAPTER 2. OPTIMAX

Document d1 Document d2

a

α

a

receive@p1

♯x@p2

newNode@p2

send@p2

α ♯y@p1

Document d3

a

receive@p1

♯x@p2

newNode@p2

send@p2

receive@p2

♯z@p1

♯y@p1

newNode@p1

send@p1

α ♯w@p2

Figure 2.11: "Ping-pong" example introduced by repeated delegation.

The solution to this problem is the same that we use to solve the problem
of loops: we keep track of all the documents that we have visited.

Delegation loops (the “ping-pong” problem) A more subtle problem
arises when we try to delegate a subtree α to a peer from which that subtree
has already been delegated. The example of Figure 2.11 shows the exact
problem.

A document d1 resides at peer p1. We decide to delegate the subtree α to
peer p2, which results in the document d2. In the sequel, we delegate α back
to p1. The result of this action is the document d3. By comparing d1 and d3,
we see that in both documents the α subtree resides at peer p1. However,
in the case of d3 the subtree α has to pass from peer p2 to be installed to
peer p1. Moreover, the results of any service calls in α which are activated
during the evaluation of d3, will need to arrive to p1, then will be sent to p2
and then sent back to p1 (Figure 2.12).

This kind of delegations are obviously needless and may continue end-
lessly. OptimAX discovers them as soon as they appear, by examining to
which peer each subtree of a document has been delegated, and does not
develop plans that have this kind of loops.

In the case where we do not stop the development of these plans, the
search space becomes infinite even for simple problems with one service

26

2.3. AN OPTIMIZER FOR AXML

Document d1 Document d3

Figure 2.12: Evaluation result arrival to the documents d1 and d3 of Fig-
ure 2.11.

call and two participating peers. The plans that contain these kind of
loops, will be classed as bad plans by OptimAX’ cost estimation function
(which is in the lines of the cost function described at Section 2.2.1) and
will never be proposed as good plans. However, this entails that we stop
the optimization after some repetitions since the search space will be infinite.

Preserving document validity during delegation When applying dele-
gation some precautions have to be taken in order not to produce an invalid
document. The two special cases where the delegation can not be performed
are shown in Figure 2.13. In this Figure and in the sequel, dashed lines
represent references. They may represent

– the where part of a send or a receive, which points to the respective
receive and send (Figure 2.14);

– the what part of a send, in the case that it is a reference to a service
call (Figure 2.13).

Considering the document at left in the Figure, we want to delegate the
grey subtree rooted at sc1 to a different peer. However, a send node in
this subtree expects to read the results of the evaluation of the service call
sc2 located outside the subtree. If we delegate the grey subtree to another
peer, the results of sc2 will be produced at that peer, and therefore will
be unavailable to the send call which expects to ship them. To avoid this
inconsistency, we disallow such delegations. Note that this type of sends,
which copy evaluation results from one place of the document to another, can
be introduced by the factorization rule. Thus, such a problem may appear
very easily by applying just one optimization rule.

The document at right in Figure 2.13 illustrates the opposite scenario.
Consider again the grey subtree rooted at sc1. It contains a service call sc2,
which is pointed by the what child of a send outside the subtree. If we
delegate the grey subtree to a distant peer, the send becomes isolated from

27

CHAPTER 2. OPTIMAX

Figure 2.13: Problematic delegation cases.

its stream of data to be sent, and cannot function.

Factorization constraints In the case of factorization, the consistency
check is more complex than in the case of delegation. When applying a
factorization rule, we replace a subtree sub with a send and a receive which
are going to copy from another part of the document, the data that sub was
going to produce. The deletion of sub entails two important computations:

1. finding the set of nodes that should be deleted;

2. verifying that these nodes are not data providers for service calls that
remain in the document after factorization.

Figure 2.14 depicts a document just before applying the factorization
rule. We are planning to replace sc2 with a send and a receive that are
going to copy the results of sc1 where sc2 is placed. We start by identifying
the nodes that should be deleted from that document (nodesToBeDeleted
set). These are the nodes of the subtree rooted at sc2, and all the nodes
that provide data to this subtree. The latter means that after adding
to nodesToBeDeleted the nodes under the sc2, we should check the
nodesToBeDeleted for any receives, like the receive2 in Figure 2.14. For
each receive found, there is a send somewhere in the document that will
provide it with data, such as send2 in the Figure. Thus, the subtrees
rooted at these sends should be added to nodesToBeDeleted, and so on
recursively. The computation ends when all the sends of the receives found
in nodesToBeDeleted have been visited.

The second step is the verification of the document consistency. We have
identified the nodes that provide data to sc2 and we are ready to delete them.

28

2.3. AN OPTIMIZER FOR AXML

Figure 2.14: Factorization example.

However, there is a possibility that these nodes provide data to another
part of the document. For example, consider the node send1 inside the
nodesToBeDeleted set. We can only delete such a node after checking that
its corresponding receive node is also among nodesToBeDeleted. If this is
not the case, factorization cannot be applied.

2.3.3 Search strategies and heuristics

The applications we consider for AXML have very varied profiles. One
class of applications focuses on subscriptions [12], where factorization is cru-
cial (to avoid duplicate data transfers) and query composition may also
apply (to efficiently filter out subscriptions). Other applications consider
distributed data management workflows [46], where instantiation and dele-
gation are central. As another example, our current WebContent project [60]
focuses on XQuery processing in a structured P2P network, based on a dis-
tributed XML index; the main rule is query decomposition isolating the
largest subquery the index may handle. The total time budget given to the
optimizer also varies with the application.

To accommodate such a variety of settings, we have devised a simple
XML dialect for specifying the optimizer’s search strategy. Each strategy is
a sequence of steps. Each step applies a given search algorithm (which can
be: depth-first or breadth-first, and possibly attempt to rewrite the cheapest
plan first), using a given rule set, and with an upper bound on the number
of plans developed.

29

CHAPTER 2. OPTIMAX

〈strategy〉

〈step〉

〈algo〉BF〈/algo〉〈algo〉CD〈/algo〉

〈repetition〉

〈atom〉DELG〈/atom〉

〈atom〉FACT〈/atom〉

〈card〉100〈/card〉

〈/repetition〉

〈/step〉

〈step〉

〈algo〉DF〈/algo〉〈algo〉CD〈/algo〉

〈repetition〉

〈atom〉DELG〈/atom〉

〈atom〉FACT〈/atom〉

〈card〉20〈/card〉

〈/repetition〉

〈/step〉

〈/strategy〉

Figure 2.15: Sample strategy file.

For instance Figure 2.15 shows an OptimAX strategy file consisting of
two steps. The first step may develop 100 plans in a breadth-first, cost-driven
manner, then the second step may apply depth-first, cost-driven search pro-
ducing 20 more plans, then the best plan found so far is chosen. In both of
the steps, only the delegation and the factorization rewriting rules are used.

If no specific strategy is provided, the default strategy runs a single step,
using the depth-first, cost-driven strategy, and develops 100 plans using all
rules. In our experience, this simple strategy lead to useful rewritings.

2.4 Case studies

In this Section we discuss two case studies involving distributed opti-
mization in a peer-to-peer setting which can be handled by OptimAX. The
scenario in Section 2.4.1 involved peer interacting in a unstructured peer-
to-peer network in a read- and write-intensive application. Section 2.4.2
considers a different situation, when large data volumes are handled in a
structured peer-to-peer network in which two structured XML indices co-
exist.

30

2.4. CASE STUDIES

2.4.1 Distributed software development in EDOS

The following distributed data management scenario is closely inspired
from a real application encountered in the EDOS (efficient distribution of
open source software) EU project, concerning the automatic management
of the Mandriva (formerly known as Mandrake) Linux distribution. The
scenario concerns the collaborative development and distribution of software
packages. Several developers, distributed all over the world, write updates
for a set of software packages. Each developer works at his own location,
and pushes his updates to one or several servers geographically close to him.
Each server hosts some, but not all, of the distribution’s packages. In this
context, a typical user query is: Whenever there is a new update on the
Emacs package, I want to receive the update and the name of its developer.

In this section, we first analyze the needs of such applications in Sec-
tion 2.4.1.1. We then show how to handle them using AXML and OptimAX
in Section 2.4.1.2.

2.4.1.1 Application analysis

Let us first analyze some characteristics and requirements of this ap-
plication. First, in a distributed setting, this data need must be answered
efficiently, regardless of where the data comes from, and, if possible, regard-
less of how the user was able to express this need using some query language.
Second, the query has an inherent continuous, incremental nature: the user
should not receive every day information on all Emacs updates ever written,
but only receive new updates as they arise. Finally, the application is highly
dynamic:

– The set of packages under development changes over time;
– The overall developer community changes over time;
– The set of packages a given developer contributes to changes over time,

as well as the peers where his updates are published.
Clearly, the scope of changes in the system is very wide. It is thus an
application requirement that once a query has been defined, its execution
proceeds seamlessly and efficiently independently of the particular state of
the system.

Other natural requirements for such applications include flexibility,
genericity and ease of deployment. Writing custom application code specific
to each such data need is cumbersome and does not scale. Conceptual uni-
formity of the models employed to capture the application is also desirable.
Modern content management software is quite complex, making applica-
tions very difficult to optimize. In particular, data management operations
(filtering, restructuring, reformatting, data transfers, subscription etc.) are
increasingly delegated to software tools other than a database management
server. As a consequence, a database optimizer’s power is confined to a

31

CHAPTER 2. OPTIMAX

Figure 2.16: Motivating example: distributed software management.

smaller and smaller part of the global computation. In contrast, deploying
an application based on a few paradigms (ideally one!) allows reasoning
over the application globally, and opens avenues for optimization.

32

2.4. CASE STUDIES

for $m in document(“PDS/devServers.xml”)//server,

$u1 in document(“PPU/packUpdates.xml”)//updates,

$u2 in document(concat($m/name,“/ftp.xml”)//upd

where $u1/pack=“Emacs” and $u1/ID=$u2/ID and

$m/dev/name=$u1/by

return {$u2/src}, {$u1/by}

Figure 2.17: EDOS application example expressed in XQuery.

To explain the technical issues raised by such applications, we layout the
data placement on various peers in Figure 2.16. In this Figure, trees stand
for XML documents, node labels in regular font denote element or attribute
names, while labels in italic denote values (leaves). On peer PDS , the docu-
ment devServers.xml lists the peers on which each developer posts his contri-
butions. On peer PPU , the document packUpdates.xml associates developers
with the updates they produced for each package. On peers P1, P2, . . . , Pk,
software updates are available for download. These peers play the role of
servers with respect to the possible users that may download code from
them. Information on a given software package is scattered in the system:
one peer, say Pi, holds the update IDs and code, the PPU peer associates
packages with their updates, while the peer PDS indicates the server where
each developer contributes his work. The query peer is denoted PQ, while
developers work on peers D1, D2 etc.

We may attempt to solve our problem by writing an XQuery query such
as the one shown in Figure 2.17. In this query, $m iterates over the code-
hosting servers to which some developer may upload code. The list of these
servers can be obtained from the peer PDS . The query variable $u1 iterates
over all the package update entries, listed at the peer PPU . Recall that PPU

only stores the ID and contributor of each update, but does not specify where
each update can be downloaded from.

The variable $u2 iterates over all the updates found at any code hosting
server. Indeed, the URIs of the documents in which $u2 must be matched
are dynamically computed from the bindings of the variable $m. The first
condition in the where clause restricts the query to the updates of Emacs
packages. The remaining conditions ensure that $u1 and $u2 reference the
same code update, and that the author of $u1 is the same as the contributor
listed at PDS .

Clearly, the query in Figure 2.17 refers to distributed data and must be
evaluated in a distributed fashion. Several alternatives can be considered for
its evaluation.

– One may ship the document devServers.xml from PDS to the query peer
PQ, the document packUpdates.xml from PPU to PQ, and finally all the
documents ftp.xml found at the server peers P1, P2, P3 etc. Then,

33

CHAPTER 2. OPTIMAX

the query could be evaluated locally at PQ. This approach entails
important network transfers, since all data in the network is sent at
PQ.

– An improvement can be made by exploiting the selection on Emacs
code packages. Indeed, one could transfer from PPU to PQ, instead of
packUpdates.xml, only the result of the sub-query:
document(“packUpdates.xml”)/updates[pack=”Emacs”]

However, all ftp.xml documents from the code servers still have to be
transferred.

– To avoid transferring all ftp.xml documents, one may push to all the
code server peers Pi a query of the form document(“ftp.xml”)//upd[ID=$ID],
where $ID stands for the package IDs resulting from the Emacs package
query evaluated at PPU . This would still require contacting all code
serve peers, which is not satisfactory considering how many user
queries similar to our example may exist in the system.

– With the help of a distributed index, one may avoid systematically
querying all code server peers. Indeed, one may index the content of
all the ftp.xml documents e.g. in a DHT-based XML index such as
KadoP [5, 6]. Using the index, one may efficiently locate the ftp.xml

document(s) containing updates with the ID equal to $ID.
Observe that a lookup in a global distributed index (such as KadoP or

close competitors [27, 33]) cannot answer the query. This is because each
document is indexed separately, whereas in the EDOS application, different
documents from peers initially unknown must be joined in order to find
results. At best, one may use a global XML index twice: once to obtain the
IDs of Emacs packages, and a second time to locate the desired packages in
the network consisting of the P1, P2, . . . , Pk code server peers.

In the sequel, we consider the possible optimizations that may be brought
to the EDOS application, if we chose to model it using AXML and optimize
it via OptimAX rewritings.

2.4.1.2 Optimizing the EDOS application

To enable OptimAX to handle the application, we must first express it
under the form of an AXML document, namely d1@PQ shown in Figure 2.18.
In this document, a call to the generic query service is made, requiring the
evaluation of application query (initially shown in Figure 2.17).

Writing conventions For simplicity, in the sequel, in AXML documents
we will use names of queries with some location peer, e.g. q@p or q@any, to
denote a call to the generic query service of the form gqs(q)@p, respectively,
gqs@any. Moreover, in the Figures of this section, whenever an AXML
document is represented at the top, including calls to the generic query
service parameterized by various queries, the definitions of those queries

34

2.4. CASE STUDIES

d1@PQ q@any

q

for $m in document(“PDS/devServers.xml”)//server,

$u1 in document(“PPU /packUpdates.xml”)//updates,

$u2 in document(concat($m/name,“/ftp.xml”)//upd

where $u1/pack=“Emacs” and $u1/ID=$u2/ID and

$m/dev/name=$u1/by

return {$u2/src}, {$u1/by}

Figure 2.18: Original AXML document d1 which resides in peer PQ.

appear underneath the AXML document, for reference.

Coming back to our presentation of the example in Figure 2.18, observe
that in d1@PQ, the peer that must evaluate this query is set to any, denoting
that no assignment of work has been done yet.

The first optimization step which OptimAX may apply is to decompose
q into smaller sub-queries. These are:

– subQ1, which is a join between the data of PDS and PPU , and will
provide the ids of the useful updates, the names of their authors and
the peers where these authors publish their updates;

– subQ2, which is a selection of the right updates based on the output
data of subQ1.

Such query decomposition is based on standard XQuery syntactic analysis.
OptimAX does not implement such functionalities itself, and instead may
rely on one or several static XQuery analysis tools for this purpose. A
particular example of such an XQuery analyzer, which has been actually
integrated with OptimAX, is Tree Graph Views [54]. Other similar query
decomposition methods are based on tree pattern extraction from XQuery
queries [20, 44]. Figure 2.19 shows subQ1, subQ2 and the new document d2
that is produced by this decomposition.

Optimizing subQ1 Similarly, OptimAX relies on an XQuery analyzer to
further decompose subQ1 into the simple queries subQ1a, subQ1b and subQ1c

shown in Figure 2.20.
The query subQ1a retrieves the server data from peer PDS , while subQ1b

retrieves only the IDs and the developer’s names for the Emacs updates and
subQ1c joins the output of these two services on the developer name. Fig-
ure 2.19 depicts the document d3 that was the result of this decomposition.

35

CHAPTER 2. OPTIMAX

d2@PQ

subQ2@any

subQ1@any

subQ1

for $m in document(“PDS/devServers.xml”)/server,

$u1 in document(“PPU/packUpdates.xml”)/updates

where $m/dev/name=$u1/by and $u1/pack=“Emacs”

return <result>

<server>{$m/name}</server>

<ID>{$u1/ID}</ID>

<by>{$u1/by}</by>

</result>

subQ2

for $in in inputService,

$u2 in

document(concat($in/result/server,“ftp.xml”))//upd

where $in/result/ID=$u2/ID

return {$u2/src}, {$in/result/by}

Figure 2.19: Decomposing query q of d1 into subQ1 and subQ2.

Since subQ1a scans the data of server PDS , its execution peer is set to
PDS . Similarly, the execution peer of subQ1b is set to PPU . The next decision
that has to be taken is the execution peer of the join subQ1c. OptimAX
should choose one peer that has the power to perform the join and has a
good network connection, at least, with the peers that execute the input
queries in order to perform fast the operation. Let’s assume that peer PDS

is chosen based on various statistics collected in the past and d3 is rewritten
to d4, shown in Figure 2.21.

Note that the above step is not enough to minimize the execution costs
of the subtree rooted in subQ1c. The evaluation steps that we should follow
when evaluating the subtree rooted in subQ1c of d4 are the following:

1. PQ will contact PDS and it will ask the evaluation of subQ1a,

2. PQ will contact PPU and it will ask the evaluation of subQ1b,

3. PDS will evaluate subQ1a and will send the execution results to PQ,

4. PPU will evaluate subQ1b and will send the execution results to PQ,

5. PQ will send the execution results of subQ1a and subQ1b to PDS and
it will ask for the evaluation of the subQ1c,

6. PDS will evaluate subQ1c and will send the execution results to PQ.

36

2.4. CASE STUDIES

d3@PQ

subQ2@any

subQ1c@any

subQ1a@any subQ1b@any

subQ1a
for $m in document(“PDS/devServers.xml”)/server,

return <result><server>{$m}</server></result>

subQ1b

for $u1 in document(“PPU /packUpdates.xml”)/updates

where $u1/pack=“Emacs”

return <result><ID>{$u1/ID}</ID><by>{$u1/by}</by></result>

subQ1c

for $m in inputService subQ1a,

$u1 in inputService subQ1b

where $m/server/dev/name=$u1/by

return <result>

<server>{$m/server}</server>

<ID>{$u1/ID}</ID>

<by>{$u1/by}</by>

</result>

subQ2

for $in in inputService,

$u2 in

document(concat($in/result/server,“ftp.xml”))//upd

where $in/result/ID=$u2/ID

return {$u2/src}, {$in/result/by}

Figure 2.20: Decomposing query subQ1 of d2 into subQ1a, subQ1b and
subQ1c.

The network transfers of the above execution are depicted in the left
part of Figure 2.23. Even if we have chosen PPU to perform the join subQ1c,
we see that there is a lot of (unnecessary) network traffic because PQ still
coordinates the evaluation.

Our goal is to ask from PDS to evaluate the subtree rooted in subQ1c

and to return to PQ the final result, which, in other words, means that
we want to delegate that subtree to PDS . This delegation is depicted in
Figure 2.24. Figure 2.22 will help us understand what happens when we

37

CHAPTER 2. OPTIMAX

d4@PQ

subQ2@any

subQ1c@PDS

subQ1a@PDS subQ1b@PPU

subQ1a
for $m in document(“PDS/devServers.xml”)/server,

return <result><server>{$m}</server></result>

subQ1b

for $u1 in document(“PPU/packUpdates.xml”)/updates

where $u1/pack=“Emacs”

return <result><ID>{$u1/ID}</ID><by>{$u1/by}</by></result>

subQ1c

for $m in inputService subQ1a,

$u1 in inputService subQ1b

where $m/server/dev/name=$u1/by

return <result>

<server>{$m/server}</server>

<ID>{$u1/ID}</ID>

<by>{$u1/by}</by>

</result>

subQ2

for $in in inputService,

$u2 in

document(concat($in/result/server,“ftp.xml”))//upd

where $in/result/ID=$u2/ID

return {$u2/src}, {$in/result/by}

Figure 2.21: Assigning execution peers to subQ1a, subQ1b and subQ1c

(queries unchanged from Figure 2.20).

evaluate document d5. The first line of that Figure depicts d5 at the end of
its evaluation, with the service calls that have been activated, shown with
bold fonts. As we see, the subtree rooted in send@PDS will not be evaluated
at peer PQ, where d5 resides, but at peer PDS , where it is going to be
installed by the newNode service. The new document which is generated
and evaluated at peer PDS , is shown at the second line of Figure 2.22. The
right part of Figure 2.23 represents the network transfers that occur during
the evaluation of the delegation.

38

2.4. CASE STUDIES

d5@PQ

subQ2@any

receive@PQ

♯x@PDS

newNode@PDS

send@PDS

♯y@P subQ1c@PDS

subQ1a@PDS subQ1b@PPU

newDoc@PDS

a

send@PDS

♯y@P subQ1c@PDS

subQ1a@PDS subQ1b@PPU

Figure 2.22: Evaluation analysis of d4@PQ.

Figure 2.23: Ordering of the messages exchanged in the EDOS application.

39

CHAPTER 2. OPTIMAX

d5@PQ

subQ2@any

receive@PQ

♯x@PDS

newNode@PDS

send@PDS

♯y@P subQ1c@PDS

subQ1a@PDS subQ1b@PPU

subQ1a
for $m in document(“PDS/devServers.xml”)/server,

return <result><server>{$m}</server></result>

subQ1b

for $u1 in document(“PPU/packUpdates.xml”)/updates

where $u1/pack=“Emacs”

return <result><ID>{$u1/ID}</ID><by>{$u1/by}</by></result>

subQ1c

for $m in inputService subQ1a,

$u1 in inputService subQ1b

where $m/server/dev/name=$u1/by

return <result>

<server>{$m/server}</server>

<ID>{$u1/ID}</ID>

<by>{$u1/by}</by>

</result>

subQ2

for $in in inputService,

$u2 in

document(concat($in/result/server,“ftp.xml”))//upd

where $in/result/ID=$u2/ID

return {$u2/src}, {$in/result/by}

Figure 2.24: Delegating the subquery rooted in subQ1c of d3 to peer PDS .

Optimizing subQ2 After optimizing the sub-query subQ1, we are going to
proceed to the optimization of subQ2. We assign PQ as its execution peer
and we get document d6 shown in Figure 2.25. We proceed by analyzing the

40

2.4. CASE STUDIES

d6@PQ

subQ2@PQ

receive@PQ

♯x@PDS

newNode@PDS

send@PDS

♯y@P subQ1c@PDS

subQ1a@PDS subQ1b@PPU

subQ1a
for $m in document(“PDS/devServers.xml”)/server,

return <result><server>{$m}</server></result>

subQ1b

for $u1 in document(“PPU /packUpdates.xml”)/updates

where $u1/pack=“Emacs”

return <result><ID>{$u1/ID}</ID><by>{$u1/by}</by></result>

subQ1c

for $m in inputService subQ1a,

$u1 in inputService subQ1b

where $m/server/dev/name=$u1/by

return <result>

<server>{$m/server}</server>

<ID>{$u1/ID}</ID>

<by>{$u1/by}</by>

</result>

subQ2

for $in in inputService,

$u2 in

document(concat($in/result/server,“ftp.xml”))//upd

where $in/result/ID=$u2/ID

return {$u2/src}, {$in/result/by}

Figure 2.25: Changing the evaluation peer of subQ2.

evaluation steps of subQ2@PQ. The hosting peer of subQ2 is PQ and is going
to evaluate it locally. subQ2 will receive data from subQ1c and based on these
data, it is going to call every of the servers P1, P2, . . . , Pk indicated by subQ1c

in order to receive updates. After receiving all the updates from each of the

41

CHAPTER 2. OPTIMAX

d7@PQ

subQ2a@PQ

subQ2b@PQ

receive@PQ

♯x@PDS

newNode@PDS

send@PDS

♯y@P subQ1c@PDS

subQ1a@PDS subQ1b@PPU

subQ2a

for $in in inputService,//result

document($in/document)//upd

where $in/ID=$u2/ID

return {$u2/src}, {$in/result/by}

subQ2b

for $in in inputService,//result

return <result>

<document>

{concat($in/server,“ftp.xml”}

</document>

<server>{$in/server}</server>

<ID>{$in/ID}</ID>

<by>{$in/by}</by>

</result>

Figure 2.26: Changing the evaluation peer of subQ2.

servers where the developers of Emacs updates publish their updates, it is
going to filter them based on their ID in order to see which of them are the
needed ones. The evaluation scenario described here is better than the q@PQ

which retrieved updates from all the available peers, even from peers that
did not contain such updates. Nevertheless further optimization is needed
in order to filter the non-Emacs updates early enough, at P1, P2, . . . , Pk.

This can be achieved by decomposing subQ2 to subQ2a and subQ2b and
by using the flattening rewriting rule. Figure 2.26 shows the new document

42

2.4. CASE STUDIES

that results from the decomposition of subQ2 (sub-queries subQ1a, subQ1b

and subQ1c are omitted due to lack of space in the image). Applying the
flattening rewriting rule, will result a new document d8 at which subQ2b will
be the call in the container of the flattening rule and subQ2a will be the
call that will be copied during evaluation as many times as the results of
subQ2b. This rewriting will allow us to call only the servers that have the
Emacs updates and filter out the non-Emacs updates at these servers and
not at the query server PQ.

Until this point we have not discussed about continuous and incremen-
tal requirements identified in this application. However, the final produced
query can be evaluated in a continuous fashion which means that the services
subQ1a and subQ1b will continuously monitor the documents devServers.xml

and packUpdates.xml for new information. Whenever a developer publishes a
new update to peer P∗, the server PPU will be updated with the new infor-
mation. As soon as it is updated, new data will be provided to sub-query
subQ1b which will filter out the non-Emacs related data. Then data will be
passed to buildGSC which is going to create a new service call subQ2a for
each new update. These service calls are going to fetch the correct updates
and the needed information to peer PQ.

2.4.2 Warehousing Web data in WebContent

This Section describes the usage that was made of the OptimAX AXML
optimizer within the WebContent R&D project. First, Section 2.4.2.1 out-
lines the purpose of the project, its technical choices, and in particular its
distributed peer-to-peer architecture. Section 2.4.2.2 then goes into the de-
tails of a WebContent peer, and presents its storage, indexing, and query
processing functionalities.

Finally, Section 2.4.2.3 describes a particular technical point we solved in
the WebContent platform thanks to the presence of OptimAX: integrating
two different DHT-based XML indices and being able to use them both when
processing a single query.

2.4.2.1 WebContent overview

WebContent is a research & development project funded by ANR, the
French National Research Agency from 2006 to 2009. The project includes 4
INRIA groups (INRIA-Mostrare, INRIA-GEMO, INRIA-InSitu and INRIA-
EXMO Project EXMO), several universities (e.g. Paris 6 and University of
Versailles) and several industrial partners. Among them, the most important
ones are CEA-LIST, EADS DS - SDRT/IPCC Team, Exalead (web search
company) and Soredab (a consortium of food industry companies).

The goal of the project is information discovery, information understand-
ing and information construction in all possible forms it can appear. In par-

43

CHAPTER 2. OPTIMAX

Figure 2.27: Service call oriented view of the WebContent project.

ticular we concentrate on the usage of XML & HTML documents and web
services. We provide semantic integration utilities and intelligent search en-
gines. The WebContent is a flexible and generic platform for content man-
agement and integrates Semantic Web technologies in order to show their
effectiveness on real applications with strong economic or societal stakes.
The first group of applications on the platform revolve around:

– economic watch in aeronautics
– strategic intelligence
– microbiological and chemical food risk
– watch on seismic events
The project is directly influenced by the results obtained from the older

e.dot previous R&D project, focused on the construction of Web data ware-
houses. The Thus, XML syntax is widely used inside the platform for the
meta data representation, ontologies are used to describe the application se-
mantics, and web services are used to develop distributed applications. We-
bContent goes one step further and it incorporates more semantics following
the W3C standard, interfaces, peer-to-peer architectures and multilingual
support. More information on WebContent is available from the project
Web site [60].

The WebContent architecture is centered around WebContent docu-
ments, conforming to a relatively loose schema, which captures generic
document structure (title, sections, paragraphs etc.) as well as RDF an-
notations attached to document fragments and serialized in XML. The
project follows a a document warehouse approach, allowing the storage,
enrichment and exploitation of the documents by means of WebServices.
Two architectures have been envisioned:

44

2.4. CASE STUDIES

– a tightly coupled architecture, where services and documents are inte-
grated by means of specifying precisely the URIs of each service and
document to be used in a processing chain. Communication takes place
via ESB [30].

– a loosely coupled architecture, decentralized setting aiming at process-
ing large volume of data while preserving location transparence that is:
users may specify what data must be processed, without the need to
specify where the data is, and the system is then responsible for locat-
ing the respective data sources. In this case computers are connected
via the Internet and communication takes place view Web services
exchanging SOAP [57] messages.

In both cases, there can be several instances of each service, in particu-
lar, storage services are provided by multiple machines; and, services can
be called from inside or outside the federation of sites implementing the
warehouse. In particular, the GEMO group has been involved in devising
the loosely coupled architecture. The following technical choices have been
made:

– Distributed Hash Tables (or DHTs, in short [31]), for indexing the
documents and query processing. DHTs are a class of decentralized
distributed systems which provide a lookup service similar to hash
table. Data items are inserted in a DHT and found by specifying a
unique key for that data. The underlying algorithm determines which
node is responsible for storing the data associated with any given key.
Therefore each node maintains information (e.g. IP address) of a small
number of nodes in the system, which are called neighbors, forming an
overlay network and rooting messages to the overlay in order to store
and retrieve keys. The DHT technology makes the process of indexing
and locating documents easy and transparent to the user.

– Active XML, for coordinating the processing and integrating services
developed within the platform. AXML was chosen since it allows as-
sembling services from any providers, whether standard Web servers
or AXML peers. As we have seen earlier in this Chapter, AXML
documents endowed with proper data dependencies or activation or-
der constraints can be used to sequence and combine calls to several
services in a way that resembles a simple Web service workflow model.

A WebContent application deployed in the P2P architecture is outlined
in Figure 2.27. The Figure depicts a WebContent warehouse consisting of
documents gathered for the purpose of a Web market survey application for
the EADS partner. More specifically, it shows:

1. a focused crawler service which returns Web documents related to spe-
cific domains. In our case it may return aircraft sales by Airbus and
Boeing (for a continuous, on-line market survey) and food risk infor-
mation, for a consortium of food companies seeking to organize and

45

CHAPTER 2. OPTIMAX

structure information related to different food problems (contamina-
tions, allergens etc.). The crawler service returns XML documents with
information-rich headers (crawling date, origin site etc.)

2. a storage service which can be invoked to make the crawled document
persistent in the WebContent warehouse

3. multiple translation services which are used to translate to and from
English, French, Chinese etc

4. semantic annotation services which are invoked to analyze the text
of the crawled pages and extract, e.g., specific aircraft brands, names
of edible plants or bacteria that taint food etc. The annotations are
added as a semantic header to the XML documents, under the form of
XML-ized RDF snippets, and the modified documents are put back in
the store

5. visualization and query services can be used at this point to exploit the
corpus, either via advanced user interfaces (e.g. “fish-eye lens” view on
documents) or by querying it, using a subset of XQuery (with full-text
search) or SPARQL [50].

In this distributed setting, two issues arise:
– locating useful resources;
– efficiently implementing DHT-based versions of the Web services which

are more easily provided in a centralized setting.
In the sequel of the section, we focus on the implementation of the dis-

tributed query service.

2.4.2.2 Structure of a Web Content peer

The architecture of a WebContent peer and the P2P communication
among the peers is shown in Figure 2.28. We list the main modules and
functionality, and then briefly discuss each of them.

Each WebContent peer provides the following functionalities:
– resource storage
– DHT-based resource indexing and lookup primitives
– low-level (execution engine) processing primitives
– high level (query interface/optimizer) data access operations. Of these,

the execution engine primitives use the resource storage and the DHT
indexing level, whereas the high-level data access operations only on
the lower levels.

Resource storage is implemented by a local XML database to each peer.
Our current implementation uses eXist [59]. We have considered the alter-
native of using MonetDB [41] which we rejected due to missing support for
some particular syntax constrains brought by the WebContent format. Each
eXist database provides query and update functionalities on the documents

46

2.4. CASE STUDIES

Figure 2.28: Internal architecture of a WebContent peer.

it stores.

DHT index/lookup is implemented by specialized modules which were
developed by the project participants. More concretely, we have used two
such platforms:

– KadoP [5] is an XML data management system which indexes data
and answers tree pattern queries over this data.

– Pathfinder XML data management system [32] it is able to process
tree pattern and range queries. A modified hash function permits to
the system to evaluate efficiently this type of queries.

The execution engine layer includes first, the distributed tree pattern
query processor of KadoP [5], and second, the Web service invocation infras-
tructure underlying the AXML platform.
The high level data access layer is implemented by an XQuery interface,
the AXML engine, OptimAX and TGV [54]. The latter is a XQuery algebraic
analyzer which is able to decompose complex XQuery queries to simpler ones
that can be processed by the the DHTs and the AXML engine. TGV is called
by OptimAX when the query composition/decomposition rule is applied.

47

CHAPTER 2. OPTIMAX

2.4.2.3 Processing distributed XQueries over two DHTs

Each of the two DHTs used in the platform has its own interfaces and
capabilities. We start by outlining them both, and then we explain how
distributed query processing was implemented based on them.

KadoP indexing The first indexing model considered is provided by the
KadoP system [5]. In this indexing model all element & attribute names
and words (ignoring stop words) that appear in XML files are used as index
keys. Index values are structural identifiers of the form docID, start, end
specifying all the locations where each individual key exist in the system.
KadoP’s tree pattern language consists of trees where each node is labeled
with a XML node or word and edges stand for parent-child or ancestor-
descendant relationships. When a tree pattern query is received by the
system a Holistic Twig Join is performed on the lists identifiers associated
to the query node labels. A drawback of the KadoP system is that it can
not process queries with inequalities e.g. //article[year > 2005].

PathFinder indexing: The second indexing model considered comes
from the PathFinder platform [32] which places index entries in a way that
reduces the number of peers contacted (hops) when answering a query.
The index keys used are linear parent-child rooted paths encountered in
the network’s XML documents. The index values are sorted docID list
of identifiers of documents which contain a given path. By tuning the
hash function, PathFinder ensures that index entries corresponding to keys
that are close in lexicographic order, are placed on peers that are close to
each other (in the sense of proximity in the DHT structure). The biggest
advantage of PathFinder is that it can answer inequality queries such as
//article[year > 2005].

Query processing: Assume that peer p receives a query qx expressed in a
XQuery dialect. Such queries want results from all the documents published
in the WebContent warehouse. Of course there is a naive, semantic driven
implementation which would exhibit very poor performance. In our context
a query is modeled as an ActiveXML document which contains a call to an
abstract service called WebContentQuery(q). OptimAX is aware of this
service and it has a rewriting rule that replaces that call with:

gqs@p(recomposeQ, tpq@any(t1), tpq@any(t2), ..., tpq@any(tn))

where t1, t2 etc are conjunctive tree pattern queries, tpq is a tree pattern

48

2.4. CASE STUDIES

query processing service, which we will detail in the sequel, and recomposeQ
is a XQuery query such that, for any set of XML documents indexed in the
WebContent warehouse

q ≡ recomposeQ(t1, t2, . . . , tn)

In the above, gqs stands for the generic query service used in AXML,
and which we had introduced in Section 2.1.1. Recall that this service is
available on all peers; given an XQuery and some locally available XML
inputs, it evaluates the query and returns the XML answer and it is most
often used in order to join XML streams that arrive at a specific peer. The
interest of decomposing the gqs is that the tpq service is available on every
WebContent peer and it is efficiently implemented by the two available DHT
instances on every peer (see Figure 2.28). The notation tpq@any means
that any concrete endpoint of the tpq service can be used. All of them will
provide the same answer but with different response times because data
transfers during the index look-ups may change when tpqs are executed
at different peers. It is the task of OptimAX to make the right choice in
order to minimize the total query execution time by consulting cardinality
statistics maintained in the network or locally cached copies which may
reside on the peer.

Putting it all together Given an XQuery query xq, the TGV algebraic
analyzer extracts the recomposition query and a set of tree patterns, which
are then analyzed. Depending on their syntax, OptimAX will dispatch
them to the KadoP, respectively to the PathFinder index. As an example,
consider the query:

for $x in //report[//’A320’],

$y in /airbuslib/report[year>2005]

where $x/author=$y/author

return <res>{$x/title, $y/title}</res>

The pattern //report[//’A320’] will be handled by KadoP, while
/airbuslib/report[year>2005] will be handled by PathFinder. The recom-
position query is:

for $i in $res1, $j in $res2

where $i/author=$j/author

return <res>{$i/title, $j/title}</res>

Patterns featuring both // and inequalities are currently handled to KadoP
ignoring the value predicates, which are applied in a post-processing step.

49

CHAPTER 2. OPTIMAX

2.5 Experimental analysis

In this Section, we study the efficiency of plan finding using OptimAX.
The AXML activation cost reductions due to delegation and instantiation
have been shown to reach several orders of magnitude [45, 46]. Clearly, other
rules can improve that factor.

Experiments described in this Section have run on a computer with Intel
Xeon CPU 5120 @ 1.86GHz, 3GB of Ram and Mandriva Linux 10.

We consider three sets of synthetic parametric documents, consisting
exclusively of service calls (except the root). Document deep-n.xml consists
of n service calls organized in a linear tree of fanout 1. Document flat-n.xml
consists of a root node and n service call children. Finally, document tree-
n.xml is an arbitrary tree of n service call nodes where the maximum fanout
is fmax = 6. Each document is characterized by nd, the number of distinct
services called. Services assigned randomly (uniform distribution over a set
of nd) to each tree node. Each optimization problem is further characterized
by np, the number of peers which to which computations may be delegated.
In these experiments we consider delegation and factorization.

The graphs in Figure 2.29 and 2.30 depict the time for exhaustive opti-
mization, resp. to obtain a plan with the best cost (as determined by of the
exhaustive process).

In the top graph of Figure 2.29, we study the documents deep-n.xml,
maximizing opportunities for delegation due to the deep nesting of calls.
Total optimization time grows exponentially with n, which agrees with the
lower bound for the search space size (Section 2.3.1). The bottom graph con-
siders the document flat-20.xml while varying nd; here, factorization applies
more and more as nd lowers.

In Figure 2.30, we use the documents tree-n.xml, varying n, with np = 2
(upper) and np = 3 (lower). We set nd to n, resp. 2n. Since the services
are chosen independently for each node, for both values of nd, some calls are
likely to refer to the same service, and some factorization occurs (more for
nd = n). The graphs show that the total optimization time grows exponen-
tially with n, and generally grows as nd decreases, since this often means
more factorization opportunities. Moreover, the total time grows from a few
seconds, to a few hundred seconds as np moves from 2 to 3, also as predicted
by the lower bound on the search space size from Section 2.3.1. For appli-
cations running for a long time, it may make sense to spend some minutes
optimizing, but for others, exhaustive optimization is prohibitive.

The good news shared by all graphs in Figure 2.29 and 2.30 is that the
time to the best solution is very moderate, of the order of 0.1-0.5 seconds.
This is due to our depth-first then cost-based search strategy we apply (to
rewrite a plan, we consider the most rewritten ones, and among them, we
pick the cheapest one).

50

2.5. EXPERIMENTAL ANALYSIS

Figure 2.29: Optimization time for deep and flat documents.

Our next experiment demonstrates the interest of non-exhaustive strate-
gies. For the two graphs in Figure 2.31 at the top, our strategy ran a depth-
first, greedy search limited at 200 delegations and/or factorizations. For
small n values, this strategy is complete, and the running time (a few ms)
is almost identical to that of the full exploration. For larger n values, lim-
iting the search to 200 rewritings marginally increases the cost of the best

51

CHAPTER 2. OPTIMAX

Figure 2.30: Optimization time for tree documents.

solution, but decreases the search time by an order of magnitude! At the
bottom graphs of Figure 2.31, we used the same plans as at the bottom graph
of Figure 2.30, with the following strategy: explore 55 factorizations, then 55
delegations. This strategy finds plans within a factor of 2 of the optimum,
but may decrease running time by 3 orders of magnitude!

52

2.5. EXPERIMENTAL ANALYSIS

Figure 2.31: Time and cost trade-offs for deep-n.xml with non-exhaustive
strategies.

Figure 2.32: Estimated cost reduction for tree documents.

53

CHAPTER 2. OPTIMAX

In Figure 2.32, we use the documents tree-n.xml, varying n, with np = 2
and np = 3. In this experiment, we use a depth-first cost driven strategy
and we limit the search space size to 3000 explored documents. We measure
the cost of a document before and after the optimization and we calculate
the cost reduction that we have achieved. As we may observe, the average
cost reduction is between 30% and 35%, which is really encouraging.

In conclusion, that while the AXML search space is huge, efficient ex-
haustive strategies typically find an optimal plan fast. For larger problems,
non-exhaustive “smart” strategies critically cut optimization time, while pro-
ducing near-optimal plans. This demonstrates the practical applicability of
our optimizer.

2.6 Software architecture design

OptimAX is a project that has more than 16.000 lines of Java code. In
this Section, we discuss the design of the code, which had to reach several
goals. The first major goal was extensibility and facility to modify the set of
rules. The second goal was smooth integration within the AXML platform.
In particular, it has been our goal that OptimAX may work on any imple-
mentation of AXML, and that AXML may work with or without OptimAX,
since in some very simple AXML applications, optimization is not needed
since either all operations are inexpensive or performance is not the main
goal. Finally, and crucially, the optimizer itself had to be quite efficient in
order to be worth the effort. Observe that while the first goals plead for a
clean separation between the optimizer and the AXML platform, the latter
is typically achieved by embedding the optimizer tight within the execution
engine of a given data management system, with the known drawbacks (dif-
ficulty of evolution, as well as over-adaptation to a given set of rules and
execution engine).

In this Section, we present the design that has allowed us to conciliate
these seemingly conflicting goals. Section 2.6.1 outlines OptimAX’ class
structure, and the relationships among these classes. We focus on two major
class families, the AXML document representation related classes and the
rewriting rule related classes. In Section 2.6.2, we address the integration of
OptimAX with the AXML peer, and the communication between them.

2.6.1 Inside OptimAX

This section briefly explains the internal code organization of OptimAX.
We first consider the internal representation of an AXML document within
OptimAX. A proper design at this level was crucial to ensure good perfor-
mance. We then outline the AXML rewriting rules that have been imple-
mented and experimented with.

54

2.6. SOFTWARE ARCHITECTURE DESIGN

Figure 2.33: UML diagram of the ADNode interface and related classes.

From AXML document to ADocument OptimAX uses AXML doc-
uments to communicate with the AXML engine. This data representation
is useful for many reasons, such as user readability of the data, but it is
not ideal for the optimization process. Plain data, which will not be used
during optimization, should not be visible to the optimizer and moreover
should not be loaded into memory. The latter is really important since the
exploration of the optimization search space, the document rewritings and
the resulting documents are done and kept into memory until the end of the
optimization procedure. Apart from the document size, there are also other
reasons why we have decided to follow a different document representation.
More particularly, we need a data representation providing efficient support
for:

– applying rewriting rules
– estimating the execution cost of every generated document
– checking document equivalence.

For these reasons, we have decided to adopt an internal representation of an
AXML document, implemented by a class called ADocument. Every AXML
document can be converted to an ADocument and converted back to the
initial AXML document without any data loss. The ADocument retains the
needed information for the optimization process and for the rest of the data,
keeps XPath pointers to the original AXML document.

Continuing the discussion of ADocument implementation, the UML dia-
gram of Figure 2.33 shows the interfaces and classes that compose an ADocu-
ment. Before analyzing each of the classes and their relationship, we should
mention that there is no 1-to-1 correspondence between AXML elements
and ADocument nodes. This means that, very likely, more than one AXML
element is represented by one ADocument node.

ANode is the interface of an ADocument node. It contains all the
common functionalities that the ADocument nodes share. This interface is

55

CHAPTER 2. OPTIMAX

implemented by two major classes: the SimpleNode class and the ServiceCall
class.

Every service call, which may appear in an AXML document, can be
represented by an object of the ServiceCall class. However, there are some
service calls that should be handled differently. There are eight classes which
extend the ServiceCall class, and represent the eight specific types of service
calls that OptimAX can identify. These classes are:

– DocStream objects represent the calls to an AXML service which
read a (AXML) documents and return their contents as a stream. The
result transmission frequency and the result number per transmission
is configurable.

– EvalQ objects represent the calls to the KadoP DHT service. This
service was discussed in Section 2.4.2.2.

– GQS objects represent the calls to the generic query service provided
by the AXML engine. This service can evaluate distributive XQueries
as described in Section 2.1.1 over continuous input streams, using a
fixed size window.

– NewNode, Send and Receive ojects represent calls to the respec-
tive newnode, send and receive AXML services, introduced in Sec-
tion 2.1.3.

– PFS objects represent calls to the PathFinder [32] DHT service, pre-
viously discussed in Section 2.4.2.2.

– WCQuery objects represent WebContentQuery(q) abstract service
calls. We say the calls are abstract, since no direct implementation is
provided for this service; instead, OptimAX always rewrites such calls
into a composition of calls to the gqs, EvalQ and PFS services. An
example showing how this service is handled by OptimAX has been
shown in Section 2.4.2.3.

SimpleNode objects represent all the AXML document nodes that are not
represented by a ServiceCall object. The SimpleNode class is extended by
the Address class. Objects of the last class are used to represent AXML
document nodes that reference service calls. Such references are introduced
during optimization and are children (parameters) of the send, receive and
newnode service calls (Section 2.1.3).

Rules and their details Rule classes are implemented in the lines of
ANode classes. The Rule interface describes the one and only method,
called applyRule. All rule classes must implement this method. The six
current implementations of this interface are:

– Composition and TGVDecomposer implement the composition
and decomposition rule;

– Factorization, Delegation and Instantiation implement the re-
spective synonymous rules;

56

2.6. SOFTWARE ARCHITECTURE DESIGN

Figure 2.34: Sample AXML document (before optimization) in the GUI.

– XQuery2EQS is the specific rule activated when a call to the We-
bContent query service is identified. As previously explained, such
calls are compiled using the two available DHTs of the WebContent
peer-to-peer platform.

OptimAX GUI elements Several graphical user interface elements were
developed for the OptimAX demo [11] and were helpful in visualizing and
making sense of the whole process.

First, a visualization of ADocuments has been realized and provides a
quick view of the essential elements in an AXML document. Figure 2.34
exemplifies the display associated to a simple document used in the Op-
timAX demo. Since two subtrees perform identical computations in this
document, a factorization rule applies, and the resulting document is shown
in Figure 2.35. This document looks more complex, due to the send and
receive calls introduced by factorization, but its evaluation is likely to be
more efficient.

Second, the search space as a whole can be visualized under the form of a
state graph. Figure 2.36 exemplifies the small search space that corresponds
to the document shown in Figure 2.34. Each numbered node corresponds to
one AXML document. The graph has a source, which is the initial document,
and several sinks, which are documents to which no further rewriting rule can
be applied (without reaching a state that has already been explored). Green-
colored transitions represent a reduction in the estimated AXML evaluation
cost. Red-color transitions represent an increase in cost. The doubly circled
node represents the selected (best) optimization alternative.

57

CHAPTER 2. OPTIMAX

Figure 2.35: The AXML document of Figure 2.34 after factorization.

58

2.6. SOFTWARE ARCHITECTURE DESIGN

Figure 2.36: The optimization search space for the document of Figure 2.34.

59

CHAPTER 2. OPTIMAX

Figure 2.37: Cost reduction as estimated by OptimAX during the optimiza-
tion of the AXML document of Figure 2.34.

Finally, OptimAX produces graphs showing the variation of the esti-
mated cost of the best alternative found, during the optimization. Fig-
ure 2.37 illustrates this. On the x axis, we represent the number of explored
rewritings, which naturally increases with the optimization time. The curve
in the Figure traces the smallest estimated cost identified so far. The scat-
tered points above the curve show the cost of other states which are explored
as the search goes on, but which do not lead to a reduction in the smallest
estimated cost.

2.6.2 Integrating OptimAX with the AXML peer

OptimAX is implemented as a service of the second version of the AXML
peer [23]. Figure 2.38 represents the interactions between the peer and the
optimizer.

The AXML peer is equipped with an XML/XQuery DBMS and it is
responsible of storing and managing the (A)XML documents of the peer.
When a user requests the evaluation of a document d, the peer will call
OptimAX to trigger optimization. The peer provides to OptimAX the doc-
ument d, the needed statistics and the optimization strategy that should be
used. All this information is stored as XML data in the DBMS of the peer.
Based on the given data, OptimAX will explore some part of the complete

60

2.6. SOFTWARE ARCHITECTURE DESIGN

Figure 2.38: Interactions between the AXML peer and OptimAX.

search space, and it will return the document d′ with the smallest estimated
evaluation cost. This document will be evaluated by the AXML peer with
the help of other AXML peers, if needed. The evaluation results will arrive
to the peer that started the evaluation and will be appended to d′.

Throughout the process, the user is not aware of, and should not be
aware of, the existence of d′, since he only requested the evaluation of d.
Therefore, the AXML peer should update d with the results that arrive at
d′. This is ensured by a mapping between the service call node IDs of d and
d′. Whenever a result arrives at d′, the AXML peer will check in the map
if there is a corresponding service call at d. If it is found, then the result is
also added as a result of that service call at d.

We make here two interesting observations.
– There may be service calls in d′ that do not map to service calls of d.

This is very likely because some rewriting rules produce more service
calls from a given service call (such as the decomposition rule).

– There may be service calls in d that may never receive results as a
result of the evaluation of the optimized document. This may happen
for various reasons. For example, a family of service calls in d may
have been replaced by one service in d′ (composition rule). Another
example is when the evaluation of a specific subtree of d is assigned to
another peer (delegation rule).

What is ensured throughout optimization, is that the top level service calls
of d, the service calls that do not have other service calls as ancestors, will
always receive results, if there are any.

61

CHAPTER 2. OPTIMAX

2.7 Related works

The starting point of this work is the AXML language [3], which we ex-
tended with the send, receive and newnode services and with a flexible yet
simple way to control call activation order (Section 2.1). This brings impor-
tant benefits to users, which may combine continuous and non-continuous
services at will. It is also crucial for the efficiency of optimized plans. Con-
sider e.g. the plan send@p1(f@px, p2.d1.#1). Depending on whether px is
p1, p2 or another peer, we may wish to activate send first (thus, push the
computation to px) or f first (thus, call f from p1). Our previous alge-
braic proposal [7] was unable to express both - a shortcoming we detected
while implementing OptimAX. We defined valid schedules and formalized
the optimization problem accordingly.

A language for AXML replication and some XPath execution strategies
were introduced in [4], which does not address optimization. The full opti-
mization problem is solved in [2] in the particular case when the only rule is
useless call elimination (Section 2.3). Delegation and instantiation have first
been proposed in [46] in isolation and in an ad-hoc way which could not be
generalized. In [7] we proposed an abstract algebra (with the shortcomings
mentioned above) but did not discuss how it can be mapped into an imple-
mentable language. Finding which calls to activate to bring a document to
a given type is shown to be sometimes undecidable in [14, 42] which do not
consider optimization. Continuous services are used in [12] to specify mon-
itoring programs, but algebraic optimization is not considered. XCraft [45]
is an optimizer for non-continuous AXML. It uses a work-flow model for
AXML documents, which are split in pieces of fixed size optimized inde-
pendently. In contrast, OptimAX, based on tree rewritings, is intimately
connected with the AXML model, which allows it to include many more
rules, e.g. factorization, query composition/decomposition etc., giving it
more generality. Moreover, we explore many strategies, and we show that
a greedy-based depth-first can quickly identify efficient plans, more reliably
than a fixed-size divide and conquer approach.

Web service orchestration in work-flow style, e.g. via BPEL4WS, is a very
active area [16]. While AXML with ordering constraints has some work-flow
flavor, it trades many BPEL aspects (complex processes, exception handling
etc.) for a data-centric character that enables specific data-oriented efficient
optimizations. More generally, one can use either AXML or BPEL4WS to
specify relatively simple work-flows; we have experimented with a simple
translation tool from one to the other. OptimAX functions in the realm of
AXML documents, which we found more convenient to handle via rewriting
than process specifications.

The work presented in this Chapter follows previous works on distributed
query processing [37, 55], and in particular in the context of mediator sys-
tems [35].

62

2.8. CONCLUSION

2.8 Conclusion

In this Chapter, we have described the AXML language and the ex-
tensions that we bring to it. These extensions permit us to formalize the
optimization problem and to propose OptimAX, our approach in solving it.
In this Chapter, we have also seen how OptimAX can be used in real life -
demanding applications. We have thoroughly examined two case studies.

In the first case study, we have examined how OptimAX could have solved
optimization problems encountered in the EDOS EU project. The proposed
solution may be theoretical but it shows the optimization opportunities that
OptimAX offers.

The second case study shows how our optimizer was used into the We-
bContent project. Several research laboratories, universities and industrial
partners have collaborated in order to develop this platform. OptimAX par-
ticipation to this project, part of which was demonstrated at the VLDB 2008
conference [1], shows OptimAX’ importance and capability to perform in a
wide variety of environments.

We have also experimented using OptimAX and have seen how it de-
creases the estimated execution cost. At the end of this Chapter we have
classified and compared our work with previous related AXML works and
with the state of the art.

63

CHAPTER 2. OPTIMAX

64

Chapter 3

ViP2P - Views in peer-to-peer

We now move to describe a second main contribution of this thesis,
namely, the ViP2P (standing for Views in Peer to Peer) platform. We have
devised this platform inspired by the class of distributed data management
applications that we encountered in the WebContent project, outlined in
Section 2.4.2.

The common characteristic of the applications we target is the need for
efficient techniques for sharing large volumes of XML content in structured
P2P networks organized on DHTs. As we have previously explained, in We-
bContent, two XML content indexing platforms are integrated: KadoP [5],
and PathFinder [32]. The former provides full-text indexing of XML struc-
ture and keywords, while the latter is able to handle linear path queries
including inequalities on particular data values. Such XML indices enabled
the processing of relatively complex XML queries on the overall set of doc-
uments published in the network. However, the indexing model is fixed by
each of the individual indexing platforms, and cannot be adapted to the
particular needs of an application. For instance, should a specific applica-
tion frequently ask a tree pattern query involving n nodes, assuming it can
be processed via KadoP, n posting lists will always require joining in order
to compute the result, since KadoP does not allow the definition of custom
indices (or materialized views) suited to a specific application. (The same
holds for PathFinder or for similar DHT-based XML content management
platforms, such as [26, 33] etc.)

In ViP2P, we set out to build a flexible, generic system for DHT-based
XML content management. ViP2P can be seen as a tool for redistributing
restructured data where it is needed. Any ViP2P site (or peer) may estab-
lish some materialized views, which reflect data published anywhere in the
network, that the peer is interested in. A more likely scenario is that several
peers which are physically close (e.g. machines in the same company site)
share the burden of storing some views which may be interesting to all of
them. All view definitions are then indexed in the DHT, so that any peer

65

CHAPTER 3. VIP2P - VIEWS IN PEER-TO-PEER

4

5

6

4
4

1

2

3

p9
p8 p6

p4

p5

p3p2
p1

p7

d1

q

v1

v2

v3

v4

Figure 3.1: Architecture overview.

may learn about them. A query posed on any peer is re-written using the
existing views. In this work, we focus on the problem of finding equivalent
query rewritings based on the views in the DHT, as well as on building and
advertising the views.

This Chapter makes the following original contributions. (1) We describe
the VIP2P architecture for managing and exploiting materialized XML views
based on a DHT. (2) We consider the problem of tree pattern query rewriting
problem based on multiple views. The sets of rewritings identified by our and
similar works [19, 29, 51] partially overlap; we prove an interesting bound on
the maximal rewriting size, making it polynomial in the number of views, and
we study several corresponding rewriting algorithms. (3) We study several
strategies for indexing materialized view definitions on a DHT, and compare
their usefulness. (4) We demonstrate via experiments in a fully implemented
platform the scalability of our platform.

An early version of the work presented in this chapter has been informally
presented in an international workshop (not in the proceedings) [40]. The
complexity analysis and experiments presented in this chapter have been
obtained subsequently, and accepted for presentation at the informal French
database conference BDA 2009 [39], and are part of an ongoing submission.
A continuation of this work (not described in this thesis) is a demonstration
to appear in ICDE 2010 [36].

The architecture of ViP2P is depicted in Figure 3.1. Network peers labeled
p1 to p9 store documents, shown as triangles, and/or views, shown as tables.
Such tables attributes may be of type xml (whose values are serialized XML
subtrees), in the style of the native XML data type in SQL/XML 2003. Such

66

3.1. PATTERNS

attributes are shown as triangles inside tuples. We designate a document d
or view v at peer p by the notation d@p, respectively, v@p.

Each view is defined by a tree pattern, and this pattern (not the view
extent) is indexed in the DHT. Query processing can be traced following the
numbered arrows in the Figure. Assume query q is asked at peer p8 (step
1). Then, p8 will perform a DHT look-up to find which view definitions may
be useful to rewrite the query. For instance, p2 and p3 may return to p8
relevant view definitions (step 2). Peer p8 will then run a view-based query
rewriting algorithm, trying to reformulate q based on these definitions (step
3). A query rewriting is a logical algebraic plan based on some views, in our
example, v1@p3, v2@p5, and v3@p6. After picking a rewriting, p8 transforms
it into a distributed physical plan, which runs in a distributed fashion (step
4, thick arrows denote data transfer). In our example, v2 is sent to p6 which
joins it with v3 and sends the result to p8. At p8 it joins with v1 which is
sent from p3.

Each ViP2P view v is complete, i.e. it includes v(d) for any document
d in the network (modulo some update propagation time). To obtain such
views, whenever a new document, say d1@p1 in Figure 3.1, is published,
the publishing peer performs another type of lookup (step 5) to determine
(possibly a superset of) the view definitions to which the new document may
contribute tuples. In the Figure 3.1, such definitions are returned by p2, and
p1 finds out that d1 contributes some tuples to the view v4@p9. The tuples
are sent to p9 (step 6), which adds them to the view extent.

The remainder of this Chapter is organized as follows. Our pattern language
is discussed in Section 3.1. Section 3.2 presents the rewriting problem and its
complexity, and Section 3.3 studies several rewriting algorithms. How views
are materialized, indexed in the P2P network, and looked up is discussed
in Section 3.4. We present our experiments in Section 3.5, discuss code
organization and its main modules in Section 3.6, compare our work with
the state of the art in Section 3.7, and then conclude.

3.1 Patterns

We will rely on a tree pattern dialect P, defined as follows.

1. Pattern nodes can correspond to XML internal nodes (elements or at-
tributes), or to leaves (words in text occurring inside XML elements, or
in attribute values). For presentation purposes, we do not distinguish
between elements and attributes. We extend the XPath descendant
axis to consider that words are children of their closest element or at-
tribute ancestors. Observe that we allow a simple word to make up
a pattern node, which corresponds to the importance that keyword
searches play in our context. Each internal pattern node carries a la-

67

CHAPTER 3. VIP2P - VIEWS IN PEER-TO-PEER

bel from a tag alphabet Al = {a, b, c, . . .}. Each leaf node carries a
label from a word alphabet Aw = {a, b, c . . .}.

2. Pattern edges correspond to parent-child or ancestor-descendant rela-
tionships between nodes.

3. Each pattern node may be annotated with some stored attributes, de-
scribing some information items that the pattern stores out of each
XML node matching the pattern node. The cont annotation indicates
that the full (serialized) image each matching XML tree node is stored.
The id annotation indicates that a node identifier, which uniquely iden-
tifies the node (and the document it belongs to). Moreover, we assume
structural IDs, i.e. such that one may decide, by comparing the iden-
tifiers of two nodes n1 and n2, whether n1 is an ancestor/parent of n2

or not. Many variants of structural identifiers exist, e.g., [15, 38, 53],
some of which provide further information, e.g. allow identifying the
least common ancestor of two nodes etc. For the purpose of this work,
we only require that parent-child and ancestor-descendant relationships
can be determined from the node IDs. Finally, the val labels stands for
the node’s text value, obtained by concatenating all its text descen-
dants in document order.

4. Each node may be annotated with a predicate of the form [val = c]
where c ∈ Aw, restricting the XML nodes which match the pattern
node, to those satisfying the predicate.

Notations and syntax simplification We say a pattern node has an id,
respectively val, cont, or value predicate, if the node is decorated with such
an index.

In this thesis, we only consider ancestor-descendant edges between tree pat-
tern nodes. Extending this to also support parent-child edges is left for future
work.

We introduce a simple text syntax for patterns. We denote nodes by
their Al or Aw label. The possible id, val and cont labels, and predicates
over val, are shown as indices to the node. For instance, aid cont is a pattern
storing the structural IDs and the content of all a elements. We use paren-
thesis to show the nesting of children inside parents, and commas to separate
the children of the same pattern node among themselves. For instance,
a(b(cid)) stores the IDs of elements found on some path matching //a//b//c.
The pattern a[val=5](b, cid) stores the identifiers of all c elements having an
a ancestor of value 5, and whose serialized XML subtree contains the word b.

Pattern semantics Let p be a pattern and d be an XML document. As
customary, an embedding φ : p→ d of p in d is a function associating d nodes
to p nodes, preserving node labels and ancestor-descendant relationships [17].
The result of evaluating p on d, denoted p(d), is the list of tuples obtained

68

3.2. ALGEBRAIC REWRITINGS USING PATTERNS

by lining together in a tuple, all IDs and/or values and/or serialized content,
for each embedding of p in d. Assuming a total order over the nodes of p
(top-down, left-to-right traversal), the tuple order in p(d) is dictated by the
lexicographic order over the d nodes which are targets of the embeddings. For
a document set D, the semantics of p over D is defined as the concatenation
(in the order of the document IDs) of all p(d), d ∈ D.

We use a.id (respectively, a.val, a.cont) to denote the corresponding
attribute in p(D).

We say two patterns p1, p2 are equivalent, denoted p1 ≡ p2, if for any
database D, p1(D) = p2(D). We establish containment and equivalence of
P patterns in time polynomial in the size of the patterns [17].

3.2 Algebraic rewritings using patterns

Given a query q ∈ P and a set V of views, we are interested in the
rewritings of q, based on V. As explained in Section 3.1, the semantics of both
queries and views are relations, therefore, we investigate rewritings which
combine views by means of a relational algebra, specified in Section 3.2.1.
Based on this, Section 3.2.2 formally states the rewriting problem, while
Section 3.2.3 show that its complexity is polynomial in the number of views.

3.2.1 Algebra

The algebra we consider consists of the following operators:

1. scan(v) (or v, in short), where v ∈ V is a view.

2. The n-ary cartesian product operator ×, projection (denoted πcols),
duplicate elimination (denoted πo), and sort (denoted scols).

3. Selection, denoted σpred. Here, pred is a conjunction of predicates of
the form i ⊙ c or i ⊙ j, where i, j are attribute names, c ∈ Aw, and
⊙ ∈ {=,≺} is a binary operator. We use ≺ to designate the “is ancestor
of” predicate. Thus, assuming the attributes named i and j contain
IDs, σi≺j(op) returns those op tuples where the identifier in attribute i
corresponds to an ancestor of the node whose identifier is in attribute
j.
Note that the presence of × and σ allows, in particular, ID equality
joins ⊲⊳=, as well as structural joins [15], denoted ⊲⊳≺.

4. A navigation operator, designated navi,np, which takes as input one
algebraic expression. The attribute i in the input must correspond to
a cont attribute, and np is a pattern whose nodes must not have ids.
Let t be an input tuple to the nav, and np(t.i) denote the result of
evaluating the pattern np on the XML fragment stored in t.i (as defined
in Section 3.1). Then, navi,np will output the tuples t × np(t.i), i.e.,
obtained by successively appending to t each of the tuples in np(t.i).

69

CHAPTER 3. VIP2P - VIEWS IN PEER-TO-PEER

If np(t.i) is empty, navi,np acts like a selection, erasing t. The reason
why np nodes must not have ids is that it is generally not possible to
determine the ID of a node, from an XML fragment (not the whole
document) to which the node belongs.

As an example, let v be the view aid cont. The expression

e = nav a.cont,b(ccont,dcont)(v)

returns tuples with 4 attributes: a identifiers, a contents, and contents of c
and d descendants of a, having a common b ancestor below a.

For convenience, we extend the notation to allow several patterns to
be applied on the same cont attribute by a single nav operator. Thus,
navi,np1,np2(op) = navi,np2(navi,np1(op)).

3.2.2 Problem statement

Equivalent rewritings Let q be a P query, and e(v1, v2, . . . , vk) be an
algebraic expression over the views in V. We say e(V) is an equivalent
rewriting of q if and only if, for any database D, e(v1(D), v2(D), . . . , vk(D)) =
q(D).

As an example, the expression e from the last example above is an
equivalent rewriting for the query q = aid,cont(b(ccont, dcont)).

Problem statement (first attempt) We may at this point specify our
problem as: given q and V, find all equivalent rewritings of q using the views
V. Here and in the sequel, we assume the views and the query have been
minimized as in [17] (a difference to be made for our patterns with attributes
is: no node having id, cont or val can be removed by minimization).

However, this problem definition leads to an artificially large space of so-
lutions, since two algebraic expressions may differ in their view join orders,
selection and projection positions etc., all the while corresponding to the
same rewriting. For instance, let q = aid(b, c, d) and vb = aid(b), vc = aid(c),
vd = aid(d). Twelve syntactically different join expressions over vb, vc and
vd are equivalent rewritings of q. We are not interested in exploring these
alternatives during rewriting, as this exploration pertains to the subsequent
algebraic optimization step. To that effect, we introduce the notion of canon-
ical algebraic expressions. An algebraic expression e is said to be canonical
if it has one of the following forms:

– form 1: scan(v) or nav(scan(v))
– form 2: ×(α1, . . . , αk), where each αi is of form 1
– form 3: σpred(β), where β is of form 1 or 2
– form 4: scols(γ), where γ is of form 1, 2 or 3
– form 5: πcols(δ), where δ is of form 1, 2, 3 or 4
– form 6: π0(ǫ), where ǫ is of form 1, 2, 3, 4 or 5.

70

3.2. ALGEBRAIC REWRITINGS USING PATTERNS

val

id cont
v1

a.id b.id
b.id c.id

d

c e

b

a

cont val

[val=5]

q

v2
a

v3
a idid

c id cont d val

σ

π
c.cont, e.val

a.id=a.id
d.val=5

nav

v1

v2 v3
b.cont, . (e)val

b

Figure 3.2: Sample query, views, and rewriting.

Intuitively, the operators in canonical expressions are (1) consolidated
- there will be at most one of each of the following operators: cartesian
product, selection (possibly on a conjunction of predicates), sort, projection,
and duplicate elimination and (2) applied in a specific order (scan, then nav,
then ×, σ, s, π and π0 respectively).

Any algebraic expression can be brought to a canonical form. We say
e is a canonical rewriting of q if e is a rewriting of q, and e is a canonical
expression.

Minimal rewritings Certain canonical rewritings exhibit some re-
dundancy, as illustrated by the query q = aid and identical views v =
v′ = aid. Then, e1 = v and e2 = v′ are canonical rewritings, but so is
e3 = πid(σid=id(v × v′)). Intuitively, we are interested in finding e1 and
e2, but not e3. More formally, let e be an algebraic expression. We say
e is minimal if and only if all the expressions obtained by removing a
view from e are not equivalent to e. Several minimal canonical rewritings
can be obtained from a non-minimal one, as shown in the last example above.

View pruning If v appears in a rewriting of q, then there exists an em-
bedding φ : v → q, such that:

1. φ preserves node names

2. if n is a parent of m in v, φ(n) is an ancestor of φ(m)

3. if m has a value predicate [val = c1] in q and φ(n) = m, for some v
node m, then m must not have a value predicate [val = c2], if c1 6= c2.

A similar observation has been made in [51] (excluding item 3 above).
This observation allows pruning down the set of views V to a subset U of
views which can be embedded in q, while being guaranteed not to lose any
rewritings by doing so.

71

CHAPTER 3. VIP2P - VIEWS IN PEER-TO-PEER

View expansion An important refinement of our problem is needed. From
the cont attribute of a view node, one may extract the value of this node’s
val attribute (e.g. by the XPath query ./text()), as well as information
about its descendants, since they appear in the cont XML subtree. For
instance, in Figure 3.2, one can expand v1 by navigating within b.cont to
find its text value, and the text values of all its e descendants. This is
represented by the algebraic plan nav b.cont, .val(eval)(v1), where by a slight
abuse of syntax, we denoted by .val a pattern node matching only the root
of the XML tree on which it is evaluated, and having a val attribute. The
result can be seen as an expanded view v′1 = bid,val,cont(eval). The algebraic
expression at right in Figure 3.2 builds on this plan, and is a canonical
minimal rewriting for the query.

The need for partial expansions Observe that an expanded view does
not necessarily add under the view node having cont, all the forest rooted at
the corresponding query node. In the above example, expansion added an e
node but not a c node. Indeed, had we added the c node too, it would have
been impossible to rewrite q. Let us see why. Assume expansion transforms
v1 into v′′1 = bid,val,cont(ccont, eval). We may join v′′1 with v2 enforcing that
a.id is an ancestor of b.id and b.id is an ancestor of c.id (the latter from v2).
The resulting expression has two c nodes, descendants of b: the one from
v′′1 has cont, while the other has id and cont. As a result, this expression
contains a cartesian product of the //b//c nodes with themselves, which was
not required by the query. We cannot unify the two c nodes, as the one from
the expanded view v′′1 does not have id. Thus, it is impossible to rewrite q
based on v′′1 ; v

′
1 is necessary. This phenomenon is due to the fact that unlike

XPath views used e.g. in [51], our views may store data from more than one
nodes.

We consider the views in U have all been expanded into a set W, and
reason on W from now on.
Problem statement (final) Our problem can be now stated as follows:
given a query q and a set of views V, find all minimal canonical rewritings
of q using views from the set W, obtained by pruning, and then expanding,
V.

3.2.3 Complexity

Several aspects impact rewriting complexity.

View pruning is performed by evaluating each view on the query, con-
sidered as a data tree; if the result is non-empty, an embedding has been
found, and the view is kept. Thus, the cost of obtaining the set U from V is
Θ(|q| × Σv∈V |v|).

72

3.2. ALGEBRAIC REWRITINGS USING PATTERNS

All views which survive pruning have at most as many nodes as the
query (recall also that they are minimized from the start). Thus, for any
v ∈ U , |v| < |q|.

Expansion impact We consider the size of the setW obtained by expand-
ing U views.

Let v be a view in U , where a single node m has a cont. Assume an
embedding φ maps m to the query node n. In principle, we should generate
2|n| − 1 copies of v (where |n| is the size of the query tree rooted at n), each
of which copies as a new child of m, a subtree of the n-rooted query tree. If
a node in this subtree has an id, the id will be erased in the copy, since as
said in Section 3.2.1, IDs cannot be found inside cont attributes.

v

m

q
n

n1
...

m

u’ w’

m

v’

m

n2

...
n1’

n2’

Figure 3.3: View expansion.

Three observations allow to reduce this set (see Figure 3.3):

1. Let n1 be a descendant of n, and n2 be a child of n1. Let v′ be an
expansion of v, in which n1 is copied as n′

1, whereas n2 is not copied.
To build a rewriting based on v′, we would need some other view vx
covering node n2, and a predicate of the form n′

1.id ≺ n2.id enforcing
the appropriate relationship between the two nodes. However, n′

1 lacks
an ID, thus this predicate cannot be checked, and v′ is useless. Thus,
we only develop the expanded views such that: if a descendant n1 of
n is copied, so are its children, but also their children etc. - thus, the
full subtree rooted at n1 must be copied.

2. Again, let n1 be a descendant of n, and n2 a child of n1. This time, we
consider an expanded view u′ where n2 is copied as n′

2, and n1 is not
copied. To build a rewriting based on u′, we would need another view
covering n1, and a predicate of the form n1.id ≺ n′

2.id enforcing the
appropriate relationship among the two nodes. Again, this predicate
cannot be checked since n′

2 lacks an ID. Therefore, if we copy n2, all
its ancestors up to n must be copied.

3. In the case when m does not have an id, let n1 be a descendant of the
query node n, and w′ be an expanded view such that n1 is not copied
in w. By a similar argument as above, a rewriting based on w′ needs
another view covering node n1, and a predicate over n1.id ensuring

73

CHAPTER 3. VIP2P - VIEWS IN PEER-TO-PEER

that it is a descendant of m’s copy in w′. Since the latter node does
not have an ID in v nor w′, no rewriting can use w′.

Observations 1. and 2. entail that we only need to enumerate the subsets
of n children, and for each subset, build an expanded pattern which fully
copies the subtrees rooted in those children. This reduces the number of
generated expanded views from 2|n| to 2f(n) (where f(n) is the fan-out of
n), which is often smaller. Observation 3. further reduces it to 1 in the
particular case where m does not have an ID.

More generally, let f(q) be the maximum fan-out of a cont node in q,
f(q) ≤ |q|. Let vi be a view whose nodes m1

i ,m
2
i , . . . ,m

ki
i have cont, ki ≤

|vi| ≤ |q|, and φi an embedding from vi to q such that φi(m
j
i) = nj, 1 ≤ j ≤

ki. The expansion of vi produces Πj=1,...,ki(2
f(nj)) views, which is bounded

by Πj=1,...,ki2
f(q) ≤ 2|q|×f(q).

Thus, |W| ≤ |V| × 2|q|×f(q) ≤ |V| × 2|q|
2

.

Rewritings and covers Let e be a canonical rewriting based on some a
subset V of W. Clearly, the set of q nodes can be seen as covered by the
union of the node sets of the view involved in e. Thus, from a rewriting, one
can extract a query cover based on the view nodes.

Not any query cover leads to a rewriting. For instance, consider the
views v1 = aid(b) and v2 = cid, and the query q1 = aid(b(c)). In this case,
the query requires the b node to be an ancestor of the c node, but since v1
does not store identifiers for b, we are unable to enforce this constraint.

A cover may use a view several times, and in distinct positions. Consider,
for instance, q2 = a(aid), and the views v3 = v4 = aid; q2 may be covered
(and rewritten) by using: v4 twice, or v3 twice, or v3 in the ancestor role
and v4 in the descendant role, or the opposite.

More generally, to each set of pairs of the form (view from W, embedding
from the view to the query), where distinct pairs may use the same view with
different embeddings, corresponds at most one rewriting. We will describe
an algorithm which builds this rewriting when possible in Section 3.3; the
algorithm runs in quadratic time in the combined size of the views.

How many different embeddings exist from a view to the query? If all
query nodes have different labels, then this also holds for each view, and at
most one embedding exists. In general, let ν(q) be the maximum number
of times a given node label appears in the query. Then, the view can be
embedded in at most ν(q)|v| ≤ ν(q)|q| ways.

Rewriting size bound As we will show in Section 3.3, the maximum num-
ber of views involved in a minimal canonical rewriting is equal to the number
of query nodes.

74

3.3. REWRITING-BASED QUERY ANSWERING

c id

b

a

b

d id

f id

d

c id

f id

a

b

c id

d id

q3 a

b

c

d id

f id

v5
a

b

c id

d id

b

c id

d

DAG1 DAG2

f id

c id

b

a

b

d id df id

DAG3v4

d f id

b

c id

v6

Figure 3.4: Sample query, views, and DAGs.

Putting it all together, the worst-case complexity for enumerating all minimal
canonical rewritings is of the form |q|×(Σv∈V |v|) + (Σk=1,...,|q|C

k
|W|×ν(q)|q|

)×

(Σv∈W |v|)2. The first term accounts for pruning. The second is the cost of
enumerating all subsets of (view from W, embedding) pairs, of size at most
|q| (by a known formula, this is in O((|W|×ν(q)|q|)|q|/|q|!)), multiplied by the
quadratic cost of building a rewriting out of such a set. More simply, the sum
of the combinations can be put as O(|W||q|) which translates to O(|V||q|).
The last factor (Σv∈W |v|)2 is less than (|W| × |q|)2, thus in O(|V|)2. Thus,
the total cost is in O(|V|)|q|+2. This is significantly less than the O(2|V|)
which can be attained with a naïve set-cover approach.

3.3 Rewriting-based query answering

In this Section, we describe how queries can be answered in our architec-
ture, based on materialized tree pattern views. Section 3.3.1 discusses if and
how an algebraic rewriting can be built out of a set of views. Section 3.3.2
presents algorithms for enumerating all minimal canonical rewritings. Sec-
tion 3.3.3 outlines the optimization and execution of our rewriting plans.

3.3.1 Building a rewriting out of a set of views

As we have seen, rewritings can be obtained out of some, but not all,
covers of the query using the views. We present an algorithm (Algorithm 1)
which, given the query, a subset of views in W, and embeddings from each
view into the query, builds a particular algebraic expression over all the
views, or fails. In particular, if the views constitute a node cover, and if
an expression is returned, it will be a canonical rewriting of q, using all
the views. This rewriting is not guaranteed to be minimal; we will address
minimality further on.

Algorithm 1 starts by building the cartesian product of the views. Then,
it adds a selection on two kinds of predicates (lines 2-9). First, all the view

75

CHAPTER 3. VIP2P - VIEWS IN PEER-TO-PEER

Algorithm 1: Views-to-rewriting (possibly partial)
Input : query q, views v1, . . . , vk ∈ W,

embeddings φi : vi → q, 1 ≤ i ≤ k
Output: partial rewriting of q using v1, . . . , vk, if one exists
e← ×(v1, v2, . . . , vk)1

foreach query node n do2

S(n)← {ni ∈ vi such that φi(ni) = n and ni has an id}3

pred← true4

foreach query node n do5

pred← pred ∧
∧

ni,nj∈S(n)
(ni.id = nj.id)6

foreach m child of n do7

pred← pred ∧
∧

ni∈S(n),mj∈S(m)(ni.id ≺ mj.id)8

e← σpred(e);9

d← DAG(e); d← minimize(d)10

if d is not a tree, or d cannot be embedded in q then11

fail12

attemptFinalize(e, q)13

return e14

nodes having an id, and embedded in the same query node, must be equal.
Second, structural relationships between query nodes should be enforced
over the corresponding view nodes. As an example, consider the query q3
and the views v4 and v5 in Figure 3.4. They lead to the expression e1 =
σc.id=c.id∧ c.id≺d.id∧ d.id≺f.id(v4× v5), where in the second predicate, c is from
v5 and d is from v4. Observe that no predicate connects the b nodes, since
they do not have ids.

At line 10 in Algorithm 1, we examine the resulting expression by means
of a DAG representation, built as follows. Take all the vi trees, and fuse
all view nodes mapped to a same query node, into one node. (The result is
guaranteed to be a DAG, since the embeddings φi map the vi trees to q.) We
then minimize the DAG, by removing all redundant nodes, and redundant
edges. A node is redundant if it has no id, val or cont attribute, and is not
the only one mapped to its corresponding query node. An edge is redundant
if there exists a path in the DAG connecting the same nodes. In the example
of Figure 3.4, DAG1 is the DAG obtained from e1; the nodes and edge on
gray background are eliminated by minimization.

The function attemptFinalize attempts to build a q rewriting out
of e. It first tests if an embedding from q to d can be found; if yes, this
also implies that the views form a query cover. If so, it will attempt to
add the value selection predicates from q that e does not have, a sort, a
projection, and/or a duplicate elimination on top of e. The sort addition is

76

3.3. REWRITING-BASED QUERY ANSWERING

a bit complex, since the order in which e produces results depends on the
physical operators implementing it, and these operators are not known at
this point. Thus, we check (a) if the existing view orders allow producing e
outputs in the right order for q by some possible physical implementation
of e, or (b) if not, if e projects sufficiently many IDs to enable sorting
e’s output as desired. If some of the desired operations cannot be added,
attemptFinalize fails. In the example in Figure 3.4, the canonical rewriting
found is πd.id,f.id(e1).

Correctness Algorithm 1 is correct, i.e. if attemptFinalize produces an
output and flags it as a complete rewriting (line 13), that is indeed canonical
rewriting of q. This is guaranteed by the fact that e is equivalent to d (and
the minimized d). If the minimized d is isomorphic to q, and the necessary
selection, projection and sort operations could be applied on its equivalent
expression e, then the result is an equivalent rewriting of q.

Completeness If a canonical rewriting based on a set of views and em-
beddings exists, Algorithm 1 produces it. This is because of the aggressive
application of node predicates (lines 5-8), enforcing as many of the query-
derived relationships between nodes as possible. Intuitively, omitting one
of the predicates may lead to an undesired cartesian product in e. For
instance, in Figure 3.4, if we omit the predicate c.id = c.id from e1, we
obtain the DAG2 from the same Figure, which, after minimization, is not a
tree. If we omit the predicate d.id ≺ f.id, we obtain the DAG3 in Figure 3.4,
which, after minimization, is a tree, but attemptFinalize cannot turn it into
a rewriting, since f is not a descendant of d.

Complexity Algorithm 1 runs in quadratic time in the combined size of
the views; the most expensive operation is the DAG minimization.

Bound on minimal rewriting size We now prove that a minimal canonical
rewriting of q uses at most |q| views.

We start by proving the following lemma: for any query node n, there
must exist at least a view node mi of a view vi used in the rewriting, such
that φi(mi) = n and mi has at least as many attributes as n. We distinguish
possible cases by the number of attributes that n has:

– No attributes: the fact that at least one view vi must have a node mi

mapping to n satisfies our claim.
– One attribute: the rewriting must provide it, so at least one of the mi

nodes mapped to n must have it.
– Two attributes: consider first the case when one attribute is an id. Ei-

ther mi is the only view node mapped to n (in which case mi must also
provide the other attribute), or there are several view nodes mapped to
n. Among these, some may have no attributes at all, but those which

77

CHAPTER 3. VIP2P - VIEWS IN PEER-TO-PEER

do have attributes must all have ids, to enable the corresponding view
join 1. Among these joined views, having mj nodes with ids such that
φj(mj) = n, one at least must also provide the other attribute of n.
Now consider the case when n has val and cont. Similarly, either mi

is the only view node mapped to n, thus it provides both; or, the
rewriting joins several views by the equality of their nodes mapped to
n. Among these nodes, some must have cont, and those who do, also
have val due to expansion (Section 3.2.2).

– Finally, if n has id, val and cont, either mi is the only view node
mapped to n and it has these attributes, or several views are joined
on ids of nodes mapped to n. The first one to have cont, also has val,
due to expansion.

Let v1, . . . , vk be an ordering over the views in the rewriting. Based on
the lemma, we define the contribution of vi, denoted C(vi), as the set of
query nodes n, such that (a) a node of vi is mapped to n and has at least
all the attributes of n, and (b) no view appearing before i in the rewriting
satisfies this, i.e., for all j < i, either vj does not have a node mapped to n,
or that node does not have all the attributes of n.

It is easy to see that for two distinct views vi, vj, the sets C(vi) and
C(vj) are disjoint.

A view vi such that C(vi) = ∅ is redundant. This is because any node
relationship, or attribute, which vi brings to the rewriting, can also be found
using the previous views. Thus, for vi not to be redundant, |C(vi)| must be
at least 1.

Finally, the union of the C(vi) sets, for all views vi, is the set of the query
nodes. Thus, at most |q| views participate to a minimal rewriting. �

For example, consider the rewriting of q3 based on v4 and v5 discussed
above. In this case, C(v4) = {a, b, c, d}, and C(v5) = {f}. This rewriting
is minimal. Now assume that we also add the view v6 from the Figure to
the rewriting, before v4 and v5. Then, C(v6) = {c, f}, C(v4) = {a, b, d},
C(v5) = ∅ and v5 is redundant.

DAG vs. rewriting minimality Algorithm 1 minimizes the DAG d, not
the rewriting e. Using the C sets, one can extract from a non-minimal
rewriting e some minimal one, in time polynomial in |q|.

3.3.2 Rewriting algorithms

The first end-to-end rewriting algorithm we consider is called Subset-
Enumeration, or SE in short (Algorithm 2). It iterates over all W subsets

1. Otherwise, undesirable cartesian products (recall Partial Rewritings from Sec-
tion 3.2.2) or, equivalently, non-tree DAGs (such as DAG2 in Figure 3.4) may occur,
and prevent rewriting.

78

3.3. REWRITING-BASED QUERY ANSWERING

Algorithm 2: Subset-enum
Input : query q, view set V
Output: all minimal canonical rewritings of q based on V
U ← prune(V, q); W ← ∪v∈V expand(v)1

R← ∅2

foreach qc = {v1, v2, . . . , vk} subset of W, |qc| ≤ |q| do3

foreach tuple φ1, φ2, . . . φk of embeddings from v1, v2, . . . , vk4

into q do
e← views-to-rewriting(qc, φ1 , φ2, . . . φk) (use Algorithm 1)5

if e is an equivalent rewriting then6

add e to R7

remove from R non-minimal rewritings8

return R9

of size at most |q|, all embedding combinations from the views into q, and
accumulates rewritings in the set R. A rewriting r is non-minimal if another
rewriting r′ ∈ R uses a subset of r’s views.

Algorithm SE does not specify a subset enumeration order; thus, in the
worst case, all rewritings are enumerated before a minimal one is returned. A
simple improvement is Increasing-Subset-Enumeration, or ISE, which
builds W subsets from the smallest to the largest. Using a proper trie struc-
ture for R, one can efficiently check if a subset of the views used in a rewriting
has already lead to another rewriting, and if so, discard the larger one.

Algorithm ISE repeats a lot of work. For example, let v7 be the view
bval and v8 be the view bcid . They cannot be joined on b, and any W subset
including them both will not lead to a rewriting. However, Algorithm ISE
will try such subsets. Similarly, if v9 and v10 can be joined, then this partial
result could be stored to be re-used in several larger rewritings.

Based in this intuition, we devise a bottom-up, Dynamic Program-
ming Rewriting algorithm (or DPR, in short). It attempts to build larger
and larger partial rewritings, by combining smaller ones. The initial set of
rewritings is made of the pairs of (W view, embedding in the query). Then,
DPR combines an existing rewriting, and a rewriting made of only one view,
akin to building left-deep plans during optimization. However, unlike an op-
timizer, DPR only explores one ordering per sets of views, exactly to avoid
doing the optimizer’s work. To combine two partial rewritings, namely e1
over the set of views V1 and set of embeddings Φ1, and e2 similarly based
on V2 and Φ2, DPR invokes Algorithm 1 on V1 ∪ V2 and Φ1 ∪ Φ2. Coming
back to the above examples, DPR will observe that v7 and v8 cannot be
combined, and not attempt a rewriting combination if {v7, v8} is a subset of
V1 ∪ V2. The partial rewriting joining v9 and v10, returned by Algorithm 1,

79

CHAPTER 3. VIP2P - VIEWS IN PEER-TO-PEER

will be used to build larger rewritings using one extra view. This give DPR
a significant reduction of work over ISE.

Algorithm DPR will identify a rewriting of k views only after having
tried all rewritings using up to k − 1 views, which may take too long.

To alleviate this, we propose the Depth-First Rewriting algorithm
(or DFR, in short). Like DPR, it is bottom-up, and it builds only minimal,
left-deep rewritings. However, instead of exploring all combinations of in-
creasingly many views, DFR is a greedy algorithm. At any moment, it picks
the partial rewriting covering the most query nodes found so far, and joins it
with a 1-view partial rewriting. This leads DFR to frequently finding a first
rewriting very fast. In exchange, when DFR tries a set V of views, its subsets
may have not been previously explored. For instance, it may explore {v7, v8}
after {v7, v8, v12} and after {v7, v8, v13}, thus discover the incompatibility of
v7 with v8 several times.

ISE, DPR and DFR are correct and complete; they produce the minimal
rewritings of q given V. ISE and DPR produce the rewritings having the
fewest number of views possible, before the others. ISE and to a lesser extent
DFR may repeat some work. ISE and DPR produce rewritings towards the
end of the search, whereas DFR may produce some very early on.

3.3.3 Evaluating a rewriting

A logical rewriting plan must be optimized by standard algebraic trans-
formations, e.g. transforming the σ(×) into a join tree, pushing σ and π etc.,
and then transformed into a physical plan. In ViP2P, this plan is typically
distributed over the peers in the DHT. The execution engine includes stan-
dard implementations for scan, σ, π, hash joins, binary structural joins [15]
and a holistic twig structural join [28]. In the view definition index, we an-
notate the view tree pattern with its cardinality (known at the view peer),
allowing the optimizer to decide about join orders. The optimizer applies
heuristics to reduce, first, inter-site transfers, and second, the number of sort
operations.

3.4 P2P view management

We have so far explained how to exploit views for query rewriting. We
now consider how views are materialized (Section 3.4.1), and identified in
order to rewrite a query (Section 3.4.2) in the DHT network. Both operations
require some view definition indexing in the DHT. We stress that we do not
index view extent (tuples), but only the pattern defining the views.

We start by introducing a useful term: if d is a document and v is a view
such that v(d) 6= ∅, we say d affects v.

80

3.4. P2P VIEW MANAGEMENT

3.4.1 View materialization

Assume peer p decides to establish a view v. Then, when a peer pd
publishes a document d affecting v, pd needs to find out that v exists. To that
effect, view definitions are indexed for document-driven lookup as follows.
For any label (node name or word) appearing in the definition of the views
v1, v2, . . . , vk, the DHT will contain a pair where the key is the label, and
the value is the set of view URLs v1, v2, . . . , vk.

When a peer pd publishes a document d, pd performs a lookup with all d
labels (node names or words) to find a superset Sa of the views that d might
affect. Then, pd evaluates v(d) for each v ∈ Sa. We implemented this step
based on a SAX traversal, with time complexity in Θ(|d| × |v|). In practice,
large fragments of d are typically not interesting for a given view v, thus
computing v(d) tends to spend some time traversing useless parts of d. To
share this cost, we group view definitions in batches of some size n (we set
n = 10) and evaluate all the views of a batch in a single d traversal. Thus, d
fragments useless to all the views in a batch, are parsed only once per batch.

Finally, pd sends, for each view v, the tuple set v(d) (if it is not empty)
to the peer pv publishing v. Recall from Section 3.1 that element IDs include
document URIs, which may get rather lengthy. To speed up transfers, tuples
are encoded so that the URI of d is sent only once for the tuple set v(d).

We have so far considered that v is published before the documents which
affect it. The opposite may also happen, i.e. when v is published, a document
d affecting v may already exist, and v(d) needs to be added to v’s extent.
To that effect, we require the publisher pd of a document d to periodically
look up the set of views potentially affected by d, and send v(d) to those
views as described above. Thus, v will be up to date (reflecting all network
documents that affect it) after the periodical check and subsequent actions
have been performed by all document publishing peers.

We end the Section by considering view maintenance in the face of doc-
ument deletion or change. When documents are deleted from the system, a
similar view lookup is performed, and the peers holding the views are noti-
fied to remove the respective data. We model document changes as deletions
followed by insertions.

3.4.2 Identifying views for rewriting

A second form of view definition indexing is performed in order to find
views that may be helpful for rewriting a given query. In this context, a given
algorithm for extracting (key, value) pairs out of a view definition is termed
a view indexing strategy. For each such strategy, a view lookup method is
needed, in order to identify, given a query q, (a superset of) the views which
could be used to rewrite q. Many strategies can be devised. We present four
that we have implemented, together with the space complexity of the view

81

CHAPTER 3. VIP2P - VIEWS IN PEER-TO-PEER

indexing strategy, and the number of lookups required by the view lookup
method. We also briefly show that these strategies are complete, i.e. they
retrieve at least all the views that could be embedded in q and, thus, lead
to q rewritings.

Label indexing (LI): index v by each v node label (either some element
or attribute name, or word). The number of (key, value) pairs thus obtained
is in O(|v|).

View lookup for LI: look up by all node labels of q. The number of
lookups is Θ(|q|).

LI completeness is quite straightforward (details omitted).
The LI strategy coincides with the view definition indexing for document-
driven lookup (described in the previous Section). An interesting variant
can furthermore be devised:

Return label indexing (RLI): we index v by the labels of all v nodes
which project some attributes (at most |v|).

View lookup for RLI, interestingly, is the same as for LI. The labels on
which LI indexes v, and RLI doesn’t, are those of v nodes without attributes.
On such nodes, no join can be applied on v (due to the lack of id), and no
navigation (due to the lack of cont). Moreover, such nodes obviously do not
provide attributes corresponding to those returned by the query. Therefore,
one does not need to advertise v based on their labels.

The drawback of LI and RLI is their lack of precision. For instance, a view
aid(cid) will be retrieved for all queries involving the terms a, although it
is useless for all queries not containing c. A more precise strategy is the
following.

Leaf path indexing (LPI): let LP (v) be the set of all the distinct root-
to-leaf label paths of v. In this context, a path is just a sequence of the node
names, it does not include the edges. Index v using each element of LP (v)
as key. The number of (key, value) pairs thus obtained is in Θ(|LP (v)|).

View lookup for LPI: let LP (q) be the set of all the distinct root-to-leaf
label paths of q. Let SP (q) be the set of all non-empty sub-paths of some
path from LP (q), i.e., each path from SP (q) is obtained by erasing some
labels from a path in LP (q). Use each element in SP (q) as lookup key.

As an example, let v = aid(bid, cid), then v will be indexed by the keys
a.b and a.c. Let q be the query a(f(bid, cid)). With LPI, the view lookups
will be on a, a.f , a.b, a.c, f , f.b, f.c, b, and c. Thus, v will (correctly) be

82

3.5. PERFORMANCE EVALUATION

identified as potentially useful to rewrite q. Indeed, if a view v′ = fid exists,
then q = σa≺f∧f≺b∧f≺c(v × v′).

Let h(q) be the height of q and l(q) be the number of leaves in q. The
number of lookups is bound by Σp∈LP (q)2

|p| ≤ l(q)× 2h(q).

LPI completeness: observe that if a view v can be embedded in the query
q, then LP (v) ⊆ SP (q).

The last strategy we consider is:
Return Path Indexing (RPI): let RP (v) be the set of all rooted paths in
v which end in a node that returns some attribute. Index v using each ele-
ment of LP (v) as key. The number of (key,value) pairs is also in Θ(|RP (v)|).

View lookup for RPI coincides exactly with the lookup for LPI. RPI
completeness is shown similarly to RLI.

3.5 Performance evaluation

In this Section, we present a set of experiments we made to estimate
the performance of various aspects of our architecture. Section 3.5.1 briefly
describes our platform. Section 3.5.2 presents the experimental setup for
the next two Sections: Section 3.5.3 considers view materialization, while
Section 3.5.4 studies query processing. Section 3.5.5 studies view indexing
and lookup techniques, whereas Section 3.5.6 focuses on query rewriting on
one peer. Section 3.5.7 concludes our study.

3.5.1 System implementation and configuration

We have fully implemented the platform described so far, using Java
6. Berkeley DB (version 3.3.75, available from http://www.oracle.com) and
FreePastry (version 2.1, available from http://freepastry.org) are used for stor-
ing view data and indexing view definitions respectively. For the imple-
mentation of the nav operator, patterns are translated to XQueries, and
executed by the Saxon XQuery processor (version Saxon-B 9.1, available
from http://saxon.sourceforge.net). The nav operator is always placed on the
same peer as its input, thus it is evaluated locally.

We have made some optimizations to speed up inter-peer data trans-
fers. More precisely, when sending a stream of tuples, potentially including
many document URIs in node IDs, we encode the URIs on the fly in com-
pact integers, and send the dictionary with the tuples, so that they can be
decompressed on the other side.

In our experiments, unless otherwise specified, we have deployed 1000
ViP2P peers on 250 machines on the Grid’5000 experimental testbed,
being developed under the INRIA ALADDIN development action with sup-
port from CNRS, RENATER and several Universities as well as other fund-

83

CHAPTER 3. VIP2P - VIEWS IN PEER-TO-PEER

ing bodies (see https://www.grid5000.fr). The machines are distributed across
9 big French academic centers. They have between 2 GB and 4 GB of mem-
ory; most of them are multi-cores. All run 64 bits Debian Linux 2.6.18. We
have installed 4 ViP2P peers on each machine. Due to Grid5000 restrictions,
we could not reserve the same sets of machines for all experiments. We ran
most experiments three times and averaged the times; the difference between
2 runs was up to 20% of the values, but the general tendencies were stable.

3.5.2 Setup for view building and query processing

The peers publish a total of 2000 XMark benchmark documents [47] of
equal size; the total size of the network documents varies across successive
runs, from 400 MB to 3.2 GB. The peers also publish 500 views of up to 7
nodes. 70 views are affected by all documents; the others use XMark node
names but have no results on XMark documents. The documents and views
are split uniformly over the network. The views are indexed using LI. All 500
views are retrieved for all 2000 documents by the document-driven lookup
method described in Section 3.4.1.

Once views are indexed, a designated coordinating peer sends to all others
a start signal. Then, in parallel, the peers look up views, extract data, send
and receive tuples, and store them in their local BerkeleyDB databases. After
all its tuples are stored, each peer sends a done signal to the coordinating
peer. Of course, this synchronization is just for the experiment, and is not
needed otherwise.

3.5.3 View building

Figure 3.5 shows the total time needed to evaluate 500 views on the 2000
documents. Extraction takes place at the documents’ sites. The times are
summed up for all the peers; in reality, extraction takes place in parallel. As
expected from the description in Section 3.4.1, extraction time grows linearly
with the total document size.

Figure 3.6 shows the time measured at the coordinating peer, between
its start signal and the last of the 1000 end signals. It can be seen as the
time to load the network with our documents and views, at the fastest
possible pace. The time grows linearly in the data size, as was to be hoped.

Data transfers for view materialization increased linearly in the size of
the documents. For the 3.2 GB of published data, we transferred 468 MB of
data for view materialization, after URI compression.

3.5.4 Query evaluation

Once the views are loaded, we ask the query:

84

3.5. PERFORMANCE EVALUATION

Figure 3.5: Total tuple extraction time.

Figure 3.6: Observed view materialization latency.

siteid(regionsid(africaid(itemid)), catgraphid(edgeid))

Query rewriting and optimization at the query peer take, respectively,
30 ms and 100 ms. The smallest rewriting uses two views on two machines,
different from one where the query is asked.

85

CHAPTER 3. VIP2P - VIEWS IN PEER-TO-PEER

Figure 3.7: Execution time for increasing data size.

Query execution Figure 3.7 shows that as expected, query execution time
scales up with the size of the data set.

Data transfers for query processing also grew linearly with the total
document size, up to 12.57 MB for processing our query on the 3.2 GB
document set.

The benefits of VIP2P views can be appreciated on the following sim-
ple example. We use a data set of 750 XMark [47] documents having the
total size of 20 MB. We use three different view sets to rewrite the query
site(item(descriptioncont)):

– V1 contains the view sitecont. This corresponds to storing the full
documents in one single view; we use it to have a glimpse of the interest
of document-level granularity indices. Indeed, a system such as [33]
would identify all the corresponding documents and then evaluate the
query on the fly on those documents. We proceed quite in the same
way, by our rewriting navsitecont,item(descriptioncont)(v1).

– V2 contains three views: siteid, itemid and descriptionid,cont. This
corresponds to the node-granularity indexing used in [5], but unlike [5],
we also time the transfer of the XML results to the query peer.

– V3 contains one view which is exactly q.
This experiment was made with 2 peers in a 10 GB LAN, to minimize

data transfer impact. The view lookup and rewriting times are negligible;
the execution times are: 8.8 seconds for V1; 2.1 seconds for V2; and 1 second
for V3. As expected, having a view exactly matching the query is best. This

86

3.5. PERFORMANCE EVALUATION

Figure 3.8: View definition retrieval.

exemplifies the query speed-up that can be obtained using views, if we pay
the cost of building them.

3.5.5 View indexing and lookup strategies

In this Section, we compare the view indexing and lookup strategies LI,
RLI, LPI and RPI described in Section 3.4. We consider a synthetic query q
of 30 nodes labeled a1, . . . , a30. Each node of q has between 0 and 2 children,
and q’s height is 5. From q, we create three variants:

– q′ has the same labels as q, but totally disagrees with q on the structure
(whenever ai is an ancestor of aj in q, this does not hold in q′)

– q′′ coincides with q for half of the query (one child of the root), while
the other half conserves the corresponding q labels but totally changes
structure (as q′ does)

– q′′′ has the same structure as q, half of it has the same labels a1, . . . , a15,
while the other half uses a different set of tags b1, . . . , b15 (instead of
a16, . . . , a30).

From each of q, q′, q′′ and q′′′ we automatically generate 360 views of 2 to
5 nodes, for a total of 1440 views. The views can all be embedded into the
respective queries, i.e. those generated from q can be embedded in q, those
generated from q′ can be embedded in q′ and so on. We, thus, obtain a mix of
views ressembling the query to various degrees. To this randomly-generated
view set, we added 3 hand-picked views to ensure that one query rewriting
exists.

87

CHAPTER 3. VIP2P - VIEWS IN PEER-TO-PEER

Figure 3.9: Index entries and lookups generated for the views.

We have indexed the resulting 1443 views in our network, following the
LI, RLI, LPI and RPI strategies described in Section 3.4. We then performed
the four corresponding lookups.

Figure 3.8 shows how many views have been retrieved for each strategy,
compared with the number of useful views (those that are found to be em-
beddable in q, in our example, those generated from q, and possibly some
generated from q′′ and q′′′). We see that the path indexing-lookup strategies
(LPI and RPI) are more precise than label based ones (LI and RLI). More-
over, LPI is the most precise. This is because LPI uses longer paths as keys,
thus, it describes views more precisely, eliminating some false positives.

Figure 3.9 presents the number of (key, value) pairs added to the index
by each view indexing strategy, and the number of lookups needed by each
strategy for the query we considered. As expected, LI leads to most index
pairs. With respect to query-driven lookup, LI and RLI lead to 30 lookups,
much less than LPI and RPI lead to 370 lookups.

Figure 3.10 shows the time to obtain the initial set of views. The Figure
distinguishes the time to perform in parallel all the lookup calls on Pastry,
and the time to test if each view is useful by embedding it into q. The Figure
shows that the simple LI strategy is the best. Indeed, even though Pastry
lookups are asynchronous, issuing many lookups from the same peer comes
with a penalty, thus, LPI and RPI, which needed 370 lookups, are signifi-
cantly slower. LI makes up for its low precision by requiring few lookups.

We mention that rewriting the query based on the relevant views (282
in this example) takes around 6 seconds, whereas finding the first solution
takes around 0.5 seconds. Comparing this with the times in Figure 3.10,

88

3.5. PERFORMANCE EVALUATION

Figure 3.10: Identifying useful views.

one notices that view definition look-up is quite short, which validates the
feasibility of retrieving view definitions at query rewrite time. One may also
consider locally caching view definitions, to completely avoid look-ups. The
view pruning time could further be reduced as we explain in Section 3.7.

3.5.6 Query rewriting

We use queries of 5, 9, 13 and 17 nodes, respectively. Each query is a
balanced binary tree where all internal nodes have two children. All nodes
have different labels; the root has id, the other nodes have no attributes. This
experiment ran on a MacBookPro on the Darwin 9.6.0 kernel, and having a
2.5 GHz Intel Core 2 Duo processor.

First, for each query, we make a set of |q| 1-node views, one per query la-
bel, each having an id. This is a very hard case for our bottom-up algorithms,
as almost any subset of views can be joined. The expected complexity here
is O(|q||q|+2).

Second, we devise for each query another set of approx. |q|/2 + 1 views.
One of these views copies the top 2 levels of the query nodes; the remainder
ones are small subtrees of 1-3 nodes, made of the lowest levels in the query
trees. In these sets of views, only about half of the nodes have ids (we took
care that rewritings still exist). The complexity her is in O((|q|/2)|q|+2).
Reducing id presence also reduces the join opportunities and thus, simplifies
the problem. In both cases, all the views can be embedded in the query.

Figure 3.11 shows, for the first family of view sets (top) and the second
family (bottom) the total time, and the time to the first rewriting, taken by
ISE, DPR and DFR. The missing points are times longer than 2 minutes.

89

CHAPTER 3. VIP2P - VIEWS IN PEER-TO-PEER

Figure 3.11: Query rewriting times.

The highest times are 43 seconds for DFR-Total (at the top) and 27 seconds
for ISE-First (at the bottom). Recall that the complexity of the problems
we study is in O(|V|15). Figure 3.11 shows, first, that ISE does not scale;
the total time is very large even for |q| = 9 in the upper graph. Second, as
expected, for DPR the total time and the time to the first solutions almost
coincide. Third, DFR reaches a first solution much faster than the others;
we checked and these first rewritings were also of the minimal size (although
this cannot be guaranteed in general). Fourth, DFR total time is indeed
longer than DPR’s, due to the fact that DFR may repeat some work since
it does not explore subsets the increasing order of their sizes.

90

3.6. SOFTWARE ARCHITECTURE DESIGN

Finally, we consider again the 17-nodes query and the 9 views used in
lower part of Figure 3.11. We add a view of 1 node, with the label of the query
root, and having cont. The query root has 2 children, thus, as explained in
Section 3.2.2, expansion transforms this view into 4 views (and not 217).
Thus, rewriting proceeds with 13 views. Now, the smallest rewriting uses
just the fully expanded view; DFR, DPR and ISE all find it in less than 100
ms. The total times are respectively 5.8 seconds, 4.3 seconds, and more than
2 minutes.

3.5.7 Conclusions of the experiments

Our experiments show that the VIP2P approach for view materialization
and query processing scales up linearly in the data size, on a network of 1000
peers. With respect to the rewriting problem, when queries are complex
and/or there are many views, DFR tuned to stop after the first rewriting
gives reasonable performance. Rewriting time is also strongly correlated to
the number of ids in the views, since they enable joins.

View indexing and lookup are relatively fast, which validates the fea-
sibility of exploiting views distributed over the peer network. Among the
view indexing strategies we compared, LI cuts the most interesting compro-
mise between precision, number of entries in the DHT index, and number of
lookups needed for a given query to rewrite.

On one simple example, we have demonstrated the potential for perfor-
mance improvement provided by VIP2P views, over DHT indexes either at
document granularity level, or at node level. This demonstrates that there
exists a large in-between space, where views closely suited to application
needs can provide significant performance benefits.

3.6 Software architecture design

ViP2P is a big project that contains 44 packages and sub-packages, 294
classes and around 60.000 lines of code. Part of the project comes from a
previous project called ULoad [19]. An overview of the components of an
AXML peer is shown in Figure 3.12. We proceed by presenting the various
modules of ViP2P, their functionalities and how they interact among them.

ViP2P Core This module is responsible to initialize and coordinate all the
major modules of the system. It initializes:

– the Pastry code and creates a Pastry peer
– the document arrival module, the query arrival module and the view

arrival module. These three modules are responsible of monitor specific
directories in the peer’s file system, in order to identify newly arrived
documents, queries and views

91

CHAPTER 3. VIP2P - VIEWS IN PEER-TO-PEER

Figure 3.12: An overview of the components of the ViP2P peer and the
major interactions among them.

– other subsystems like the RMI module which is needed for the inter-
peer communication.

Document arrival module This module will search repeatedly every
few minutes for newly arrived documents. As soon as a new document is
placed in the document directory of the peer, the peer starts to publish the
document. The first step is to look up in the DHT for views that might
be interested in this document, i.e., those to which the document is likely
to contribute data. This lookup is done with the use of the digest and
depending on the digest configuration chosen, with the use of the DHT.

Digest The digest retrieves, when a document arrives, the definitions of a
superset of the views that are interested in that document. Two different
implementations of this module have been realized and can be alternatively
used:

DHT digest In this implementation we make use of the DHT to index the
view definitions and to look them up. By using the DHT we achieve
load distribution and load balancing when using the digest. Moreover,
there is no centralized point of control which makes our system less
vulnerable. This digest faithfully implements the view indexing and
look up mechanisms explained in Section 3.4.1.

Centralized digest This digest is hosted at a single, designated super-
peer, which centralizes the information and then broadcasts it to all

92

3.6. SOFTWARE ARCHITECTURE DESIGN

l1 . . . lm
v1 0 . . . 0
...

...
...

vn 0 . . . 0

Figure 3.13: Centralized digest.

the peers. This digest was not implemented first as a way to bootstrap
the system. Obviously, it introduces a bottleneck and a single point
of failure. However, it behaves well and better that the DHT digest in
small networks of 100 to 200 peers with less that 2000 views.

No digest This is the simplest implementation of the digest interface. In
this case, as the title reveals, there is no digest structure. When a
document arrives, a super-peer is contacted which provides the defi-
nitions of all the views of the system. This implementation has even
more disadvantages than the centralized digest, since it does not filter
the view definitions that it returns. This was developed for testing
purposes and is now obsolete.

The centralized digest can be seen as a n × m array, where n stands
for the number of the available views, and m stands for the number of
different labels of all the views of the system. Figure 3.13 shows an example
of the centralized digest. Every column represents a label and every row
represents a view. The element ei,j of the digest is 1 if the view vi has a
label lj , otherwise ei,j = 0. Hence, if the set of all the labels that appear
in all available views is L, then each row ri of the digest shows which
labels of the set L appear in the view vi. When a document arrives, we
traverse the document to see which of the labels of L appear in it. Based
on this traversal we construct a row rd and then for each of the rows ri
of the digest we perform the check rd ∧ ri = ri. If the check is satisfied,
it means that all the view labels of the view vi appear in the specific
document. Closing, we should mention that its size is not very big because
the digest data are bits. Additionally the check rd∧ri = ri can be performed
easily and fast because it is a logical and calculation between two bite arrays.

View arrival module This module is responsible for handling newly
arrived views. It continuously monitors the view directory and when a new
view is added by a user, it informs the digest, the repository and the index.

Repository The purpose of this module is to store temporarily, or perma-
nently, newly arrived view descriptions. These descriptions are indexed in
the DHT using an interval timestamp, corresponding to the moment when

93

CHAPTER 3. VIP2P - VIEWS IN PEER-TO-PEER

the view was added to the system. The interval timestamps are a feature
implemented by the underlying DHT (in our case, Pastry). The timestamp
is computed as:

ts = currentT ime − (currentT ime)mod(interval)

which means that time is divided into intervals, and all views published in
a given interval are associated (in the repository) to the timestamp of that
interval. Figure 3.14 illustrates this concept. In this Figure, v1 belongs to
the interval (ti+1, ti+2], v2 belongs to the interval (ti+2, ti+3] and v3 belongs
to the interval (ti+3, ti+4].

Figure 3.14: Update and lookup of the repository.

The document arrival module of a peer is responsible for checking the
repository for new view descriptions that might be interested in that peer’s
documents. Thus, it checks repeatedly every interval moments of time for
new views. Whenever a new view definition is found, the document arrival
module of the peer checks, for each of the documents, if we have already pro-
cessed that view using the digest module. If not, it checks if the view might
be interested in any of the documents. This filtering is done by comparing
the view labels with the document labels.

Going back to Figure 3.14, we see that document d1 arrives during the
(ti, ti+1] time interval, and it will need the help of the repository to discover
views v1, v2 and v3 which arrive later. d2 will discover views v1 and v2
using the digest and it will discover v2 and v3 using the repository. Note
that v2 will be returned and by the digest and by the repository and this is
the reason why we should keep track of the views that each document has
discovered.

Index The index module is responsible to index and retrieve view descrip-
tions based on the strategies that are presented in Section 3.4.2. The goal of
the index module is to make globally available, at query time, all the view
descriptions of the ViP2P peers. This is achieved using the DHT module
with which all the ViP2P peers are equipped.

94

3.6. SOFTWARE ARCHITECTURE DESIGN

As we have already seen, the digest, the repository, and the index make
use of common modules, such as the DHT, and may index and look-up view
definitions in a similar way. However, they have a fundamental difference.
The digest is used by the documents to discover views that have arrived
before their arrival to the system, the repository is used by the documents
to be informed for views that have arrived after their arrival to the system
and the index is used by the queries to be informed for views that may be
useful to their rewriting.

Query arrival module This module of ViP2P monitors the directory where
the query files are placed. Whenever a new query is detected, this module
starts the procedure for replying it by:

– making a look-up using the index module in order to find descriptions
of interesting views that can be used for the rewriting of the query

– contacting the rewriting module with the query and the view defini-
tions found and asking for a rewriting (which is a logical plan)

– contacting the optimization module asking the conversion of the logical
plan to a physical plan

– executing the physical plan via the execution engine

query 4nodeView 3nodeView

Figure 3.15: A tree-pattern query and views which can be used for its rewrit-
ing.

Rewriting module The functionality of this module has been thoroughly
explained in Section 3.3. It uses a given query and a set of available view
descriptions in order to produce a logical plan using the ViP2P’s available
logical operators: cartesianproduct, join, navigate, scan, projection,
selection, sort, structural join and structural semi − join. Figure 3.15

95

CHAPTER 3. VIP2P - VIEWS IN PEER-TO-PEER

Figure 3.16: A possible output of the rewriting module using the query and
the views of Figure 3.15 as input.

shows an example of a tree-pattern query with views that can be used
for its rewriting. Figure 3.16 shows a rewriting of the query using the
views of Figure 3.15. A rewriting is a logical plan that can be given to the
optimization module for conversion to a physical plan. We observe that the
logical plan is indicating how the views 4nodeV iew and 3nodeV iew should
be combined and it is not interested in how the data will arrive to the query
peer or where the operators will be executed.

DHT module This module is nothing more than a wrapper to the under-
lying DHT used. We have created a wrapper for the DHT methods that we
use in order to enable possibly switching to any DHT in the future. However,
using some DHT-specific modules (such as the global time/interval service
provided by Pastry) does raise some obstacles to this goal.

Optimization module The purpose of this module is to transform a
logical plan (Figure 3.16) to a physical plan (Figure 3.17). This is achieved
by selecting the right physical operators, introducing sorting operators
whenever the chosen physical operators ask for sorted inputs and inserting
Send and Receive operators to transfer data between peers. The available
physical operators are: Scan, HashJoin, Nested Loops Join, Holistic
Twig Join, Structural Ancestor Join, Structural Descendant Join,
Saxon Navigation, Selection, Projection, Send, Receive, Memory Sort
and Berkeley DB Sort.

Execution engine This module provides implementations of all the physical
operators of ViP2P. These are a subset on those developed for the ULoad

96

3.6. SOFTWARE ARCHITECTURE DESIGN

Figure 3.17: A possible result of the transformation of the logical plan of
Figure 3.16 to a physical plan.

system [21], which were based on the nested relational model; in ViP2P,
for the time being, we consider flat tuples only (indeed, the pattern lan-
guage of ViP2P is the conjunctive, unnested restriction of the XAM lan-
guage presented in[18]). In keeping with the standard iterator-based exe-
cution model [34], all operators support an interface based on the methods
open, hasNext, next and close.

When all the operators are placed on the right peers and they are
open, we will call the hasNext() method of the root operator, which is
Projection@borderau − 25.bordeaux.grid5000.fr in our example, in order
to find out if there are any results. The Projection will look at its tempo-
rary memory if there are any precalculated results. Since it is the first time
that hasNext() is being called, the temporary memory will be empty and
the operator will ask tuples from its child (Receive) in order to apply the
needed projection. The Receive is going to perform the same operation as
the Projection did. It will look at its temporary memory and if there are
no tuples, it is going ask from Send new tuples. This operation is recursive
and in the end, the leaf operators will be asked to scan their database files
in order to feed the upper operator with tuples. After the end of these
recursive calls, the hasNext() method of the Projection will reply true
or false depending on the existence of results. In the case that hasNext()

97

CHAPTER 3. VIP2P - VIEWS IN PEER-TO-PEER

replies true, we can call the next() method of that operator in order to get
the first result. For the second result, we will have to call the hasNext() be-
fore calling the next() method. This procedure is repeated since hasNext()
replies false, reassuring us that there are no more tuples for this physical plan.

Node information module This module stores all the information which
is common and shared by different classes. These can be the IP address of
the current ViP2P peer, the IP address of the bootstrap ViP2P peer, the
communication ports of these peers, the directories where the views, the
queries and the documents of the peer are located etc.

DB handler The task of the DB handler is to properly handle the Berkeley
DB databases for which a peer is responsible. These databases are accessed
when the peer wants to access a view’s data for reading or writing. The
handler keeps pointers to the databases that have been recently accessed
and keeps these databases open for a specific time limit. This ensures that
the databases are not open and closed for consecutive accesses which hurt
the peer’s performance.

RMI module Most of the inter-peer communication is being performed
using the Java RMI. RMI module gives us the opportunity to call methods
of remote ViP2P peers in order to interchange data. These data can be
from tuples that are needed during physical plan execution to statistics that
may need to be gathered.

Statistics module This module is responsible for monitoring various func-
tionalities of the peer like view materialization, physical plan execution,
query rewriting, view definition indexing & look-up etc. It can also com-
municate with the statistic modules of different peers in order to calculate
global statistics of all the ViP2P network.

Acknowledgements ViP2P software development and its experimental
evaluation have benefited from the help of Alin Ţilea, engineer since septem-
ber 2008 in our group. The distributed digest was implemented also with
the help of Julien Leblay, also an engineer from June to September 2009,
working on ViP2P.

98

3.7. RELATED WORKS

3.7 Related works

Our work is related to view-based XML query rewriting using, and to
distributed XML data management.

Tree pattern query rewriting Rewriting an XPath query based on an
XPath view has been studied in [24, 58]. More recent works have considered
rewriting XPath queries using multiple views. View intersection is used to
build rewritings in [29], and the DAGs we use in Section 3.3.1 recall their
study, since ID equality join is akin to intersection. Our rewriting problem
is complicated by the fact that our views have multiple attributes at various
places in the view. Thus, we need joins, and we need to take into account
how many times a tuple is multiplied by each extra join (as in the discussion
around expansion and Figure 3.2). Also, we assume structural ids, which
enable e.g. rewriting a(bcont) out of aid and bid,cont, which [29] does not
handle. The recent work of [51] takes structural ids a step further. They
use XPath views (including wildcard nodes labeled ∗) where the return node
always has cont and a powerful structural id, encapsulating the ids and labels
of all its ancestors, up to the root. Thus, unlike us and [29], they may rewrite
a(bcont) using bid,cont, simply by checking the b.id for an a-labeled ancestor.
We chose not to adopt such ids since they are rather lengthy, and their
encoding relies on an NFA [38]. In our context, querying many documents,
each of which would need an NFA, would significantly increase node id size,
and thus, potentially data transfers. Rewriting is reduced in [51] to finding
covers of the query leaves. Our rewritings need to cover the whole query,
but we have proved in Section 3.3.1 a |q| bound on the rewriting size, and
polynomial complexity for the rewriting. In contrast, in [51] the rewriting
size bound is |V| and the complexity is exponential in the number of query
leaves. View embedding in the query is very expensive in the presence of ∗,
thus [51] prunes views by building a view automaton at a cost of Σv∈V(|v|),
and then running q through the automaton. We could also apply this; it
would reduce our pruning cost (e.g., the embedding time in Figure 3.10) by
a factor of |q| − 1.

Rewriting rich patterns with multiple attributes is studied in [19], under
Dataguide constraints which strongly impact the algorithm, and without
considering distribution. XQuery rewriting based on XQuery views is studied
in [43], which establishes polynomial complexity for the XPath case.

From XQuery to tree patterns More generally, tree pattern views with
multiple attributes allow answering more queries than XPath views (the
presence and properties of node IDs also impacts the queries which may be
answered, as shown above). For instance, article(abstractid,cont, authorid,val)
allows answering both article(abstractcont) and article(authorval) (use π and
duplicate elimination on some ids). Rich tree patterns, including optional
and nested edges, come very close to capturing an XQuery dialect of nested

99

CHAPTER 3. VIP2P - VIEWS IN PEER-TO-PEER

FLWR (for-where-return) expressions [20]. In particular, the mandatory part
of a nested FLWR query is found in the for-where clauses of the outermost
block, and is captured by a conjunctive pattern, as considered in this work.

[61] describes efficient XQuery evaluation techniques, for queries over
documents whose URIs are known (without using views or a DHT).
The benefits of such techniques are orthogonal - and could be cumulated
with - those of using pre-computed view results, as we advocate in this work.

Distributed XML processing Closest to our work are techniques for in-
dexing and querying XML in DHT networks [33, 26, 49, 5]. Each of these
works uses a specific single XML indexing strategy, whereas we propose more
flexible views, which can be better tailored to the query needs. View def-
initions are indexed on a DHT in [48], but they consider RDF data and
rewritings based on only one view.

3.8 Conclusion

The efficient management of large XML corpora in structured P2P net-
works requires the ability to deploy data access support structures, which
can be tuned to closely fit application needs. We have presented the VIP2P
approach for building and maintaining structured materialized views, and
processing peer queries based on the existing views in the DHT network. Us-
ing DHT views adds the cost of a view definition lookup, but pre-computed
views can strongly reduce query evaluation times. We have characterized
the complexity of rewriting conjunctive tree pattern queries with attributes,
using materialized views, and we have compared several algorithms for view-
based query rewriting; DFR seems to be the most useful. We studied several
view indexing strategies and associated complete view lookup methods. The
LPI method seems best, due to its low cost both in DHT messages involved
in indexing and lookup, and to its good precision.

100

Chapter 4

Conclusion

In this thesis, we have worked on the problem of efficient data manage-
ment which is becoming more and more demanding now-days. Our contri-
bution to this research area is an optimizer for the AXML platform and a
platform that allows us to exploit materialized views deployed in the DHT
network independently by the peers, to answer an interesting dialect of tree
pattern queries.

In Chapter 2, we have thoroughly presented our proposal to the AXML
document optimization problem and we have seen how OptimAX can be
used in various demanding real life applications. Many avenues for future
work exist. In the current AXML platform, OptimAX is called only once
before each document’s complete evaluation. It is interesting to see how
repeated optimization and evaluation steps can be combined. Moreover, it
would have been useful if OptimAX would cooperate with a peer-to-peer
monitoring system, such as the one presented in [13]. With accurate and up-
to-date statistics, OptimAX’ estimations will be closer to the real evaluation
costs.

In Chapter 3, we have presented a full-fledged platform allowing first,
to manage tree pattern XML subscriptions in a dynamic DHT network,
and second, to rewrite an interesting dialect of tree pattern queries using
materialized views. We have analyzed the view materialization, the query
rewriting and view lookup procedures and we have shown the scalability
of our platform by doing experiments on a network of computers placed in
various research centers in France. Many avenues for future work exist. To
efficiently handle very large views, we could employ horizontal view fragmen-
tation, which would parallelize query execution, as was done for the DHT
index in [5]. Collaborative view recommendation is a next step; algorithms
for the centralized case start to appear [52]. Also, we are currently extending
the view pattern language presented here with value joins, to handle queries
over XML documents with RDF annotations. A demonstration of AnnoVIP,
a follow-up on ViP2P focusing on the scalable management of XML docu-

101

CHAPTER 4. CONCLUSION

ments with RDF annotations in DHT platforms, will be presented at ICDE
2010 [36].

To conclude, this thesis has been an exciting experience and discovery of
areas which were unknown to me in the past. I saw how a theoretical work
such as [7] is formalized and extended. Furthermore I saw how an optimizer is
built using these principles [11]. This thesis has given me the opportunity to
see how our work can be used in large R&D projects such as WebContent, on
which many laboratories and companies have worked. Last but not least, a
very interesting experience has been the development of the ViP2P platform.
It has been the first time that I participated from the beginning in the
development of a fully fledged peer-to-peer platform which in its current state
has around 60,000 lines of code. A fascinating experience were the scalability
experiments of the ViP2P platform. Testing a peer-to -peer platform in
a nation-wide scale, using 250 different computers (1000 ViP2P peers) is
challenging. In addition, it shows problems that can not be encountered
during smaller tests, carried on small - local clusters.

102

Bibliography

[1] S. Abiteboul, T. Allard, P. Chatalic, G. Gardarin, A. Ghitescu, F. Goas-
doué, I. Manolescu, B. Nguyen, M. Ouazara, A. Somani, N. Travers,
G. Vasile, and S. Zoupanos. WebContent: Efficient P2P Warehousing
of Web Data. In VLDB (demo), 2008.

[2] S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu, T. Milo, and
N. Preda. Lazy Query Evaluation for Active XML. In SIGMOD, 2004.

[3] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and R. Weber.
Active XML: Peer-to-Peer Data and Web Services Integration. In VLDB
(demo), 2002.

[4] S. Abiteboul, A. Bonifati, G. Cobéna, I. Manolescu, and T. Milo. Dy-
namic XML documents with distribution and replication. In SIGMOD,
2003.

[5] S. Abiteboul, I. Manolescu, N. Polyzotis, N. Preda, and C. Sun. XML
processing in DHT networks. In ICDE, 2008.

[6] S. Abiteboul, I. Manolescu, and N. Preda. Constructing and Querying
Peer-to-Peer Warehouses of XML Resources. In ICDE (demo), 2005.

[7] S. Abiteboul, I. Manolescu, and E. Taropa. A Framework for Distributed
XML Data Management. In EDBT, 2006.

[8] S. Abiteboul, I. Manolescu, and S. Zoupanos. OptimAX: optimizing
distributed continuous queries (demo). Journées Francophones en Bases
de Données Avancées (BDA), 2007.

[9] S. Abiteboul, I. Manolescu, and S. Zoupanos. OptimAX: Efficient Sup-
port for Data-Intensive Mash-Ups (demo). In ICDE, 2008.

[10] S. Abiteboul, I. Manolescu, and S. Zoupanos. Optimax: optimisation
d’applications distribuées activexml. Journées Francophones en Bases
de Données Avancées (BDA), 2008.

[11] S. Abiteboul, I. Manolescu, and S. Zoupanos. OptimAX: Optimizing
distributed ActiveXML applications. In ICWE, 2008.

[12] S. Abiteboul and B. Marinoiu. Distributed monitoring of peer-to-peer
systems. In WIDM, 2007.

103

BIBLIOGRAPHY

[13] S. Abiteboul, B. Marinoiu, and P. Bourhis. Distributed monitoring of
peer-to-peer systems. In ICDE (demo), 2008.

[14] S. Abiteboul, T. Milo, and O. Benjelloun. Regular rewriting of active
XML and unambiguity. In PODS, 2005.

[15] S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas, and
D. Srivastava. Structural Joins: A Primitive for Efficient XML Query
Pattern Matching. In ICDE, 2002.

[16] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services -
Concepts, Architectures and Applications. Springer, 2004.

[17] S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and D. Srivastava. Tree
pattern query minimization. VLDB J., 11(4), 2002.

[18] A. Arion, V. Benzaken, and I. Manolescu. XML access modules: To-
wards physical data independence in XML databases. In XIME-P, 2005.

[19] A. Arion, V. Benzaken, I. Manolescu, and Y. Papakonstantinou. Struc-
tured Materialized Views for XML Queries. In VLDB, 2007.

[20] A. Arion, V. Benzaken, I. Manolescu, Y. Papakonstantinou, and R. Vi-
jay. Algebra-Based Identification of Tree Patterns in XQuery. In FQAS,
2006.

[21] A. Arion, V. Benzaken, I. Manolescu, and R. Vijay. ULoad: Choosing
the right storage for your XML application. In VLDB, pages 1330–1333,
2005.

[22] Apache Axis2. http://ws.apache.org/axis2/.

[23] ActiveXML home page. Available at http://www.activexml.net.

[24] A. Balmin, F. Ozcan, K. Beyer, R. Cochrane, and H. Pirahesh. A Frame-
work for Using Materialized XPath Views in XML Query Processing.
In VLDB, 2004.

[25] S. Benbernou, X. He, and M. Said-Hacid. Implicit Service Calls in
ActiveXML Through OWL-S. In ICSOC, 2005.

[26] A. Bonifati and A. Cuzzocrea. Storing and retrieving XPath fragments
in structured P2P networks. Data Knowl. Eng., 59(2), 2006.

[27] A. Bonifati, U. Matrangolo, A. Cuzzocrea, and M. Jain. XPath lookup
queries in P2P networks. In WIDM, 2004.

[28] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: optimal
XML pattern matching. In SIGMOD, 2002.

[29] B. Cautis, A. Deutsch, and N. Onose. XPath Rewriting Using Multiple
Views: Achieving Completeness and Efficiency. In WebDB, 2008.

[30] D. Chappell. Enterprise Service Bus. O’Reilly, 2004.

[31] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. Towards
a common API for structured P2P overlays. In Proc. of IPTPS, 2003.

104

BIBLIOGRAPHY

[32] F. Dragan, G. Gardarin, and L. Yeh. PathFinder: Indexing And Query-
ing XML Data in a P2P System. In WTAS, 2006.

[33] L. Galanis, Y. Wang, S. R. Jeffery, and D. J. DeWitt. Locating Data
Sources in Large Distributed Systems. In VLDB, 2003.

[34] G. Graefe. Encapsulation of parallelism in the Volcano query processing
system. In SIGMOD, pages 102–111, 1990.

[35] L. Haas, D. Kossmann, E. Wimmers, and J. Yang. Optimizing queries
across diverse data sources. In VLDB, 1997.

[36] K. Karanasos and S. Zoupanos. Viewing a world of annotations through
AnnoVIP. In ICDE (demo), 2010. To appear.

[37] D. Kossmann. The State of the art in distributed query processing.
ACM Comput. Surv., 32(4), 2000.

[38] J. Lu, T. W. Ling, C. Y. Chan, and T. Chen. From Region Encoding
To Extended Dewey: On Efficient Processing of XML Twig Pattern
Matching. In VLDB, 2005.

[39] I. Manolescu and S. Zoupanos. Vues matérialisées xml pour les entrepôts
de données pair-à-pair. Journées Francophones en Bases de Données
Avancées (BDA), 2009.

[40] I. Manolescu and S. Zoupanos. XML materialized views in P2P. DataX
workshop (not in the proceedings), 2009.

[41] Monetdb: open source database system. monetdb.cwi.nl.

[42] A. Muscholl, T. Schwentick, and L. Segoufin. Active Context-Free
Games. In STACS, 2004.

[43] N. Onose, A. Deutsch, Y. Papakonstantinou, and E. Curtmola. Rewrit-
ing nested XML queries using nested views. In SIGMOD, 2006.

[44] S. Paparizos, Y. Wu, L. V. S. Lakshmanan, and H. V. Jagadish. Tree
logical classes for efficient evaluation of XQuery. In SIGMOD, pages
71–82, 2004.

[45] G. Ruberg and M. Mattoso. XCraft: Boosting the Performance of Active
XML Materialization. In EDBT, 2008.

[46] N. Ruberg, G. Ruberg, and I. Manolescu. Towards Cost-based Op-
timizations for Data-Intensive Web Service Computations. In SBBD,
2004.

[47] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and
R. Busse. XMark: A Benchmark for XML Data Management. In VLDB,
2002.

[48] L. Sidirourgos, G. Kokkinidis, T. Dalamagas, V. Christophides, and
T. K. Sellis. Indexing views to route queries in a PDMS. Distributed
and Parallel Databases, 23(1), 2008.

105

BIBLIOGRAPHY

[49] G. Skobeltsyn, M. Hauswirth, and K. Aberer. Efficient Processing of
XPath Queries with Structured Overlay Networks. In CoopIS, 2005.

[50] SPARQL Query Language for RDF. http://www.w3.org/TR/rdf-
sparql-query/.

[51] N. Tang, J. X. Yu, M. T. Özsu, B. Choi, and K.-F. Wong. Multiple
Materialized View Selection for XPath Query Rewriting. In ICDE, 2008.

[52] N. Tang, J. X. Yu, H. Tang, M. T. Özsu, and P. A. Boncz. Materialized
View Selection in XML Databases. In DASFAA, 2009.

[53] I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasundaram, E. J.
Shekita, and C. Zhang. Storing and querying ordered XML using a
relational database system. In SIGMOD, 2002.

[54] N. Travers, T.-T. Dang-Ngoc, and T. Liu. TGV: A Tree Graph View
for Modeling Untyped XQuery. In DASFAA, 2007.

[55] P. Valduriez and T. Ozsu. Principles of Distributed Database Systems.
Prentice Hall, 1999.

[56] W3C. WSDL: Web Services Definition Language 1.1.

[57] W3C. SOAP Version 1.2 Part 1: Messaging Framework (Second Edi-
tion), 2007.

[58] W. Xu and M. Ozsoyoglu. Rewriting XPath Queries Using Materialized
Views. In VLDB, 2005.

[59] eXist: Open Source Native XML Database. exist.sourceforge.net.

[60] WebContent, the Semantic Web platform (RNTL project).
www.webcontent.fr.

[61] Y. Zhang, N. Tang, and P. A. Boncz. Efficient Distribution of Full-
Fledged XQuery. In ICDE, 2009.

106

	Introduction
	OptimAX
	The AXML language
	Documents and services
	Active XML data
	Extension: built-in AXML services and replication

	AXML activation and optimization problems
	AXML activation
	AXML optimization

	an optimizer for AXML
	Optimization rules
	Implementation issues
	Search strategies and heuristics

	Case studies
	Distributed software development in EDOS
	Warehousing Web data in WebContent

	Experimental analysis
	Software architecture design
	Inside OptimAX
	Integrating OptimAX with the AXML peer

	Related works
	Conclusion

	ViP2P - Views in peer-to-peer
	Patterns
	Algebraic rewritings using patterns
	Algebra
	Problem statement
	Complexity

	Rewriting-based query answering
	Building a rewriting out of a set of views
	Rewriting algorithms
	Evaluating a rewriting

	P2P view management
	View materialization
	Identifying views for rewriting

	Performance evaluation
	System implementation and configuration
	Setup for view building and query processing
	View building
	Query evaluation
	View indexing and lookup strategies
	Query rewriting
	Conclusions of the experiments

	Software architecture design
	Related works
	Conclusion

	Conclusion

