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ABSTRACT Mobile networks experience a tremendous increase in data volume and user density due to the
massive number of coexisting users and devices. An efficient technique to alleviate this issue is to bring the
data closer to the users by exploiting cache-aided edge nodes, such as fixed and mobile access points, and
even user devices.Meanwhile, the fusion of machine learning andwireless networks offers new opportunities
for network optimization when traditional optimization approaches fail or incur high complexity. Among
the various machine learning categories, reinforcement learning provides autonomous operation without
relying on large sets of historical data for training. In this survey, reinforcement learning-aided mobile
edge caching solutions are presented and classified, based on the networking architecture and optimization
target. As sixth generation (6G) networks will be characterized by high heterogeneity, fixed cellular, fog,
cooperative, vehicular, and aerial networks are studied. The discussion of these works reveals that there exist
reinforcement learning-aided caching schemes with varying complexity that can surpass the performance of
conventional policy-based approaches. Finally, several open issues are presented, stimulating further interest
in this important research field.

INDEX TERMS 6G, edge caching, heterogeneous networks, machine learning, mobile edge networks,
reinforcement learning.

I. INTRODUCTION
Today, the wide commercial roll-out of fifth generation (5G)
networks has become a reality, better supporting enhanced
mobile broadband (eMBB) services, ultra-reliable and ultra-
low latency (URLLC) critical applications, and massive
machine type communications (mMTC) in the context of
the Internet-of-Things (IoT) [1], [2]. Moving forward, sixth
generation (6G) networks are expected to materialize around
2030 and at that time, the International Telecommunication
Union (ITU) predicts that the total mobile data traffic volume
will exceed 5 ZB per month, a 670-fold increase from
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2010 [3]. Meanwhile, mobile subscriptions will more than
triple, reaching 17.1 billion, compared to 5.32 billion in 2010.

Such figures necessitate novel wireless network design
approaches and the recent adoption of machine learning (ML)
solutions, promises significant performance gains. ML-based
techniques enable the communication networks to exploit the
wealth of data in various mobile applications and interact
with their environments in order to explore different actions
and then, according to the observed reward, they adapt
and exploit the actions yielding the highest reward for
their next ventures. A technique facilitating the evolution to
6G communications is mobile edge computing (MEC) and
caching, where computation-intensive tasks take place near
data collection and popular contents are in close proximity
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to users [4]–[7]. In this way, centralized cloud-based com-
putation is avoided, while the backhaul and fronthaul links
are relieved from constant content fetching from remote web
servers. Moreover, computational and communication delays
are considerably reduced, facilitating the provision of low-
latency applications.

At the same time, traditional non-learning-based tech-
niques might fail, due to the dynamic nature of wireless
environment involving a large number of parameters and
constraints, exhibiting prohibitive complexity for online
network optimization. In such cases, ML-aided MEC and
caching can exploit the plethora ofmobile data and answer the
questions of where, when and what to cache, as well as which
tasks should be computed at the edge [8]–[10]. As online
ML-aided network optimization is of tremendous importance
towards 6G evolution, this survey focuses on reinforcement
learning (RL)-aided edge caching in heterogeneous net-
works (HetNets) where novel paradigms, such as fog-based
radio access, cooperative communications andmobile ground
and aerial access points (APs), have dramatically changed the
networking landscape.

A. CONTRIBUTIONS
In recent years, integrating ML in wireless networks has
increased their capability to achieve 6G targets. In addition,
edge caching is an enabling technique to improve the
overall wireless network performance, through offloading
and reduced content fetching from remote locations. Con-
sidering the importance of edge caching in the context of
6G networks and the high interest in developing RL- and
deep reinforcement learning (DRL)1-aided solutions, this
survey provides an exhaustive list of RL-based edge caching
solutions in heterogeneous mobile environments. Thus, it is
the first survey, focusing on discussing the intricacies of the
different networking architectures and targeted performance
metrics on the operation of RL-aided edge caching. More
specifically, our contributions include:
• The opportunities and challenges for edge caching, due

to the introduction of network architectures with het-
erogeneous capabilities and requirements are presented,
together with the main categories of policy-based caching
strategies and optimization objectives.
• Different cache-aided HetNets are covered, including

conventional fixed cellular topologies, as well as novel
networking paradigms, relying on fog-based radio access,
cooperative networks, and highly mobile vehicular and
flying networks.
• The requirements of each category on the design of

RL-aided caching solutions is thoroughly discussed, pre-
senting various learning frameworks, such as distributed
multi-agent learning and bandit-based approaches, includ-
ing possible implementation caveats.

1DRL combines RL and neural network based function approximators in
order to tackle the curse of dimensionality. See also discussion in III-C.

• In each networking architecture, RL solutions are
classified, according to the performance metric that
is targeted by their corresponding reward functions,
i.e., energy, spectral and caching efficiency, delay and
Quality-of-Experience (QoE). Furthermore, details
on the performance evaluation and comparisons
with other learning and non-learning approaches are
given.
• Open issues are highlighted, stemming from the interplay

of RL-aided caching with various wireless networking
aspects, such as physical-layer and multiple access
design, security and network volatility from ground and
aerial vehicles.
Employing ML for edge caching purposes can provide

near optimal performance at a low complexity, tackling
high dimensionality problems, involving different mobile
networking parameters. Contrary to learning categories,
such as supervised learning exploiting training datasets or
unsupervised learning relying on past experiences, in RL,
appropriate objective functions are formulated, capturing the
impact of rewards/penalties from choosing specific actions
from the state space.

There have been several surveys focusing on either
the synergy of ML and wireless networks [8], [11] or
the gains of edge caching through traditional optimization
approaches [12], [13]. Additionally, most works dedicate
only a part on ML-aided edge caching and non-exhaustive
lists of relevant works [14]–[16] with a fewworks focusing on
ML-aided edge caching. The survey in [17] investigates ML-
based proactive caching, highlighting the improvement in
small cells and UAV-aided networks. However, the majority
of the reviewed works are non-learning-based. Another
survey studies DL for edge caching, presenting the major
DL categories and caching principles [18]. Still, the survey
mostly focuses on the DL operation in a more general
manner while the discussion often lacks details on the
networking environments and performance evaluation. The
use of artificial neural networks (ANNs) for wireless network
optimization is examined in [19], including the consideration
of edge caching applications. However, the tutorial dedicates
only one part for ANN-aided edge caching and includes a
small number of relevant works. An overview of AI-based
wireless edge caching, including supervised, unsupervised,
reinforcement and transfer learning is provided in [20].
Various challenges are highlighted, such as the dynamic envi-
ronment due to mobility and fading. Still, a broad view of RL-
based solutions that can handle the volatility of HetNets is not
provided. Finally, the survey in [21] presents ML-based edge
caching, providing a comprehensive taxonomy, according to
the adopted machine learning technique, caching strategy, i.e.
policy, location, and cache replacement, and the type and con-
tent delivery strategy. Although the included taxonomy offers
a spherical view on the role of ML in cache-aided networks
and a thorough comparison of various ML solutions, only a
small part of the survey is dedicated for discussing RL-based
solutions.
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Table 1 summarizes the contributions and the scope of
surveys, regarding RL-aided edge caching.

B. ORGANIZATION
The structure of this survey is as follows. First, Section II
presents an introduction to various ML categories, highlight-
ing their advantages and the role of RL towards autonomous
network operation without needing huge training datasets.
Then, Section III includes a taxonomy of RL-aided edge
caching elements, providing their definitions and impact.
The next five sections focus on fixed and moving edge
networks, and for each one, caching schemes are classified,
according to their performance target. More specifically,
in Section IV, we present RL-aided edge caching stud-
ies in single- and multi-cell networks, while Section V
focuses on low-complexity for radio access network (F-RAN)
topologies. Then, Section VI includes cooperative caching
approaches and local caching at mobile devices, in the
context of device-to-device (D2D) communications. Subse-
quently, highly mobile and flexible networks are discussed in
Section VII and Section VIII, i.e., vehicular and UAV-aided
networks, respectively. Open issues in the area of RL-based
edge caching are presented in Section IX, comprising among
others, physical-layer issues and security concerns, as well
as volatile networking architectures. Finally, conclusions are
given in Section X. Overall, the structure of this survey is
depicted in Fig. 1 and a list of acronyms is given in Table 2.

II. MACHINE LEARNING
Research on employing machines to process large data vol-
umes, stemming from previously allocated tasks or simulated
scenarios, towards learning to handle future tasks, has led
to the tremendous growth of machine learning (ML) [22].
In mobile communication networks, a massive number of
users and devices enjoy a broad range of services with
different service requirements from HetNet nodes, having
varying hardware capabilities. This explosive increase of
wireless traffic demands highly complex network optimiza-
tion solutions, posing difficulties to resource allocation of
bandwidth, power and storage. The adoption of online
ML solutions in such challenging settings leads to self-
adaptive networks and accurate prediction of communication
parameters, abiding to dynamic wireless conditions [23].
In this way, network performance will be enhanced, offering
improved Quality-of-Service (QoS) and resource efficiency.

ML is mainly classified into three different categories;
namely, supervised learning, unsupervised learning, and
reinforcement learning (RL) [24]; see, Fig. 2. In a finer
categorization, one can find semi-supervised learning, deep
learning and more recently, federated learning [25] and
transfer learning [26]. In what follows, we provide details on
each of these classes.
• Supervised learning: In supervised learning, the algo-

rithms rely on datasets, providing both the input and
the output. Even though supervised learning provides
improved decision-making, the need for labeled data

might be prohibitive in practice. Algorithms in this
category include classification and regression analysis
which can facilitate the characterization of data traffic and
content popularity.
• Unsupervised learning: Unsupervised learning

approaches rely on training data that do not include
labeled output. Clustering is a popular method to develop
unsupervised learning algorithms, enabling pattern
identification in datasets. In edge caching, users can be
clustered based on, for example, their desired contents,
mobility and willingness to cooperate with each other.
• Semi-supervised learning: An intermediate approach

regarding the nature of the available data has been
followed with semi-supervised learning. In this type of
learning, both labeled and unlabeled data are exploited for
training.
• Reinforcement learning: In RL, an agent’s strategy is

determined in an autonomous manner by considering the
cost and reward of each action. Therefore, the main idea
of this type of learning is radically different, as compared
to the previous mentioned ones, which exploit historical
data. Instead, RL algorithms are trained by using feedback
on previously taken actions, adapting their behavior to the
environment. In the edge caching case, various algorithms
are used, such as Q-learning for predicting content request
probability or deriving the popularity distribution. While
in supervised learning the model is trained with the correct
answer, in RL there is no answer but the reinforcement
agent makes the decision how to perform a given task.
If there does not exist any training dataset, RL learns
from its experience. Hence, unlike other approaches, RL is
about taking suitable action to maximize a reward (e.g.,
best possible behavior or path) in a particular situation.
• Deep learning: Deep learning (DL) is closely related to

the above classes of ML. It relies on multiple layers to
form artificial neural network architectures for accurate
decision-making. In this hierarchical architecture, lower-
level features define higher-level ones, while feature
extraction is autonomously performed. In edge caching
cases, DL can provide near-optimal policies for content
placement and pushing without excessive complexity,
even though large volumes of training data should be
available. Here, the observation of the mobile edge
environment leads to the formation of specific states that
act as input to the deep neural network (DNN) for deciding
the action that should be selected by the agent. Each action
results in specific rewards, that in the long-term determine
the efficiency of the DL policy.
• Federated learning: This approach decouples model

training from requiring direct access to raw training data.
In federated learning (FL) users exploit shared models
trained from excessive amounts of data, without the need
to centrally store it [25]. Here, devices take part as
clients in a federation aiming at solving the learning task
while being coordinated by a central server. Each client
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TABLE 1. List of surveys presenting reinforcement learning-aided edge caching.

FIGURE 1. Survey structure.

maintains a local training dataset that is not uploaded to
the server and only computes and communicates an update
to the current global model of the server. FL benefits
applications where training can be based on already
available data at each client, and guarantees high privacy

and security levels, since attacks affect only individual
devices, and not the cloud. In mobile edge settings,
FL-based model integration facilitates the construction
of global popularity prediction models based on local
models [27].
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TABLE 2. List of acronyms.

FIGURE 2. Different classifications of ML.

• Transfer learning: In edge environments, the energy and
resource demands for model training might be prohibitive
when constrained devices are involved. In such cases,
knowledge transfer can enhance the learning performance
without excessive data-labeling procedures. Thus, the
transfer learning paradigm initially trains a base network,
referred to as the ‘‘teacher’’ network and then, the learned
features are transferred to a target ‘‘student’’ network [26].

In this way, the acquired knowledge from a general source
problem is exploited to solve a related specific problem.
Considering the edge devices as ‘‘students’’, transfer
learning can provide significant resource savings, as long
as the relation among the source and target problems is
high.

III. TAXONOMY OF RL-AIDED CACHING IN HETNETS
Nowadays, conventional cellular architectures struggle to
provide throughput and delay guarantees and a radical depar-
ture is currently taking place, exploiting cloud computing
and the existence of edge nodes [28]. Cloud computing
offers abundant processing power for tasks, such as baseband
processing for cloud radio access networks (C-RANs),
IoT applications with a massive number of sensors and
mobile big data exploitation for network optimization
[29], [30]. Unfortunately, centralized cloud architectures
increase backhaul usage and end-to-end latency that might
be intolerable for critical and real-time applications. So,
bringing computation closer to the edge has been proposed
[5], [31]. For this purpose, the caching capabilities of edge
nodes allow the contents to be in proximity to the users,
offering latency minimization, throughput maximization,
backhaul offloading, reduced operational expenditure due
to energy savings, and finally, extended lifetime to mobile
terminals and IoT devices [6].
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FIGURE 3. Different cases of edge caching in HetNets.

A. NETWORKING ARCHITECTURE
The MEC architecture requires from edge nodes to be
equipped with storage capabilities for caching popular
contents and avoiding constant fetching from remote web
servers. Meanwhile, the wide range of different edge node
types constitutes a challenging environment for optimizing
the network performance [32].

An illustrative architecture is depicted in Fig. 3, show-
ing different cases of edge caching in HetNets. More
specifically, within the coverage area of a macro cell,
a small cell caches content and serves users, requiring
reliable and high throughput access, while a relay caches
content that was transmitted from nearby users in the uplink
and the macro BS in the downlink. Meanwhile, UAVs
provide coverage to remote areas with limited coverage
and store content that is scheduled for transmission towards
the macro BS at a later moment, in order to reach the
core network. Furthermore, various ad hoc communication
paradigms exist, including cache-enabled devices communi-
cating with each other, adopting D2D cooperation, as well
as vehicle-to-vehicle (V2V) communication in highly mobile
environments.

1) FIXED NETWORKS
The majority of networking architectures relies on fixed BSs,
being designed towards increasing the wireless coverage,
taking into account user density and mobility. Here, various
categories exist.

a: CELLULAR NETWORKS
Multi-tier cellular topologies provide high frequency reuse,
significantly increasing network capacity. Equipping BSs
of different tiers with caches can further benefit network
performance, as bottlenecks experienced in the backhaul
are alleviated while lower end-to-end delay is guaranteed.
Moreover, caching decisions can timely be exchanged among
BSs through standardized X2/Xn interfaces.

b: F-RANs
Novel networking architectures, comprising F-RANs rely
on low-complexity fog access points (F-APs), instead of
conventional BSs, where only a part of baseband processing
takes place at the F-APs [33]. F-RANs allow for flexible
and low-cost network roll-out with improved coverage to
edge nodes. Here, caching schemes should aim at alleviating
fronthaul capacity constraints in order to avoid bottlenecks
and guarantee high F-RAN performance.

c: COOPERATIVE NETWORKS
Further performance gains to cellular networks are offered
through cooperative paradigms. More specifically, intelli-
gent caching schemes can exploit the caching resources
at different nodes, distributing the content for increased
efficiency and robustness when network nodes experience
outages. Also, cooperation between users through D2D
communication can improve physical-layer aspects, such as
coverage and transmit diversity while using storage at the
devices for BS offloading [34].

2) MOVING NETWORKS
The introduction of highly mobile network nodes, providing
wireless access and storage with increased flexibility repre-
sents another important field for edge caching.

a: VEHICULAR NETWORKS
The advent of autonomous driving and demand for improved
road safety and in-car entertainment have led to the develop-
ment of V2V and vehicle-to-everything (V2X) networking.
In vehicular networks, communication takes place between
vehicles, often in a multi-hop manner while topologies are
highly dynamic [35]. In addition, the use of fixed road-side
units (RSUs) facilitates connectivity and reduces instances of
intermittent connectivity.
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b: AERIAL NETWORKS
Another radical paradigm that has attracted significant atten-
tion is the use of flexible unmanned aerial vehicles (UAVs)
to complement ground-based networks. UAV-aided networks
offer fast recovery after disasters and emergency situations,
on-demand capacity provisioning and coverage in remote and
rural areas, enabling various IoT use cases, such as precision
agriculture and fleet management [36].

B. EDGE CACHING
Data volume in mobile networks is exponentially increasing,
as more users and IoT devices are connected and new services
are developed. Characteristics, such as ultra-low latency and
very high throughput cannot be guaranteed by traditional
network architectures where remote servers or macro base
stations (BSs) provide user content. Towards this end, edge
caching represents an efficient approach to avoid overloading
at specific network locations and constant data fetchingwhich
increases the load at the backhaul and fronthaul links. In this
section, edge caching aspects are presented, starting from the
heterogeneous characteristics of 6G networks. Then, different
content update strategies are discussed and finally, details on
a variety of performance targets are given.

1) CACHING LOCATION HETEROGENEITY
Modern wireless networks consist of network nodes with
different capabilities, in terms of processing power, energy,
storage, coverage and mobility. As a result, designing edge
caching solutions should take into consideration these aspects
when determining the caching location.

a: MACRO/MICRO/PICO/FEMTO BSs
In cellular networks, BSs at different tiers are exploited
for bringing content closer to the users. Here, caching is
performed not only at macro BSs but also at small BSs, such
as micro, pico and femto BSs, providing opportunities for
distributed caching and cooperation among BSs [12].

b: F-APs
As cloud and fog capabilities are being incorporated into the
wireless architecture, low-complexity APs can be deployed
in dense topologies. In such networks, simplified edge
nodes in the form of F-APs provide storage and computing
resources while being partly responsible for the baseband
processing [33].

c: COOPERATIVE RELAYS
In cooperative networks, efficient caching can be performed
where the cache status of different nodes is shared and data is
cached across distributed buffers. In these networks, wireless
relays enhance the flexibility in network deployment and
improve the quality and reliability of wireless transmissions
due to increased diversity and reduced path-loss [37]. At the
same time, exploiting the relays’ buffers improves the delay
performance by avoiding data fetching and the resource

scheduling efficiency when buffers are kept non-empty and
non-full [38], [39].

d: USER DEVICES
Caching at the user devices exploits another dimension
of cooperative networks, i.e., D2D communication paving
the way for proximity services, performance gains to end
users, high operation cost reduction to mobile network
operators (MNOs).

e: GROUND VEHICLES/ROAD SIDE UNITS
In vehicular networks, mobility-aware caching can take
place at the vehicles and at infrastructure-based RSUs [40].
Determining the caching location in these networks is highly
challenging, as coverage and user association are subject to
frequent changes.

f: UAVs
In aerial networks, the capabilities of the UAVs to optimize
their trajectory or re-position to improve coverage increases
the degrees of freedom for determining the caching policy.
Cache-aided UAVs can be flexibly deployed in areas requir-
ing wireless access, carrying with them user content and
offering tremendous benefits to edge caching [36].

2) CACHE REPLACEMENT STRATEGIES
In mobile edge networks, there exist long-term characteristics
that affect not only the caching location but also the caching
strategy that should be employed. Such parameters include
networking architecture, user and AP mobility, network traf-
fic load, content popularity and QoS requirements. Still, the
dynamic nature of mobile networks requires cache updates
at shorter intervals using various policy-based strategies
that have been proposed for Web content caching or novel
paradigms integrating learning-based solutions.

a: REACTIVE CACHING
When a file is requested, reactive caching will decide whether
or not it will be cached, according to criteria, such as file
popularity, file size or remaining cache capacity. For example,
a popular file will remain at the cache of a network node for
a longer period of time.

b: PROACTIVE CACHING
In this approach, accurate content popularity prediction is
vital in order to determine if a file will be popular in upcoming
time periods. For this purpose, historical user preferences and
content request data can be exploited. Proactive caching can
mitigate the impact of network load variations by pre-fetching
files and pushing them at cache-aided edge nodes.

c: POLICY-BASED
The main cache update parameters consist of recency
(i.e., the time since the last object reference), frequency (i.e.,
the number of object requests over a specific time-period),
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object size, fetching cost and the time since the last
modification [41].
1) LRU: The most popular recency strategy is the least

recently used (LRU), relying on the temporal and spatial
reference locality observed in content requests. LRU removes
the least recently referenced object from the cache. LRU
variations include EXP1, measuring object importance, as the
elapsed time since the last object request [42] and LRU-
Threshold, deciding not to cache an object if its size exceeds
a pre-defined threshold [43].
2) LFU:Regarding frequency-based cache update, the least

frequently used (LFU) and its extensions consider differ-
ent object popularities. LFU removes the least frequently
requested object from the cache. The LFU-Aging variation
proposes an aging effect for once very popular objects that
are not being requested for a long period of time [44].

A thorough discussion on each approach, was provided
in [45]. Recency-based strategies adapt to new popular
objects and are more simple to implement. Frequency-based
strategies operate better when content popularity does not
dramatically change over a specific time period, but they are
more complex to implement.

d: LEARNING-BASED
As conventional optimization might not be able to provide
optimal caching strategies, ML-based approaches can be
employed to handle the large number of parameters of het-
erogeneous mobile edge networks. Learning-based caching
solutions can rely on various ML categories or even use
solutions from different categories to address specific caching
problems.

The performance of proactive edge caching is based on
the accurate prediction of different communication charac-
teristics and the adaptation to the network dynamics. For
example, supervised learning can leverage the wealth of
mobile data in order to provide the learning-based caching
strategy with accurate content popularity prediction or user
profiling results. In the next phase, RL can be used for
online optimization where one or more agents interact with
the environment, considering the reward of different actions,
in terms of a single or multiple performance metrics, such as
cache hit rate or delay reduction.

C. REINFORCEMENT LEARNING METHODS
1) FRAMEWORK
Before describing the different Reinforcement learning (RL)
methods, we discuss the main ideas of the mathematical
framework of RL, which is, in general, employed to solve
any problem that can be cast as a Markov decision prob-
lem (MDP) and its variants. It provides a formalization of
intelligent decision making that is powerful and combines
two principles - dynamic programming and supervised
learning - and addresses problems that neither of the two
principles can address individually.

Traditional dynamic programming suffers from the curse
of modeling (for systems governed from a large number
of random variables, it is often hard to derive the exact
values of the associated transition probabilities) and curse of
dimensionality (for large-scale systems with multiple states,
it is impractical to store these values). However, RL can
generate near-optimal solutions to large and complex MDPs
avoiding these curses.

Additionally, supervised learning requires a priori a set
of questions with the right answers for training the system,
which is not feasible in several dynamical systems. Unlike
supervised learning, RL systems do not require explicit input-
output pairs for training. Rather, the system is simply given
a goal to achieve and it then learns how to achieve that
goal via trial-and-error interactions with a (possibly) dynamic
environment.

2) ELEMENTS
RL problems consist of the following fundamental parts:
a) (a model of) the environment, b) the reinforcement
function (or reward signal), c) the policy, and d) the value
function.

Model-free methods are explicitly trial-and-error learners.
Here, the environment must be at least partially observable
by the system. If the environment can be observed perfectly,
then the system chooses actions based on true ‘‘states’’ of the
environment. Model-based methods use models for learning
and planning, as models allow inferences to be made about
how the environment will behave.

After performing an action in a given state, the RL agent
will receive some reinforcement (reward) in the form of a
scalar value. The goal of the RL agent is to learn to perform
actions that will maximize the sum of the reinforcements
received over the long run. The reinforcement function
therefore defines what the good and bad events for the
agent are.

The policy determines which action should be performed in
each perceived state of the environment. Therefore, the policy
is a mapping from the perceived states to actions.

The value function is a mapping from states to state
values and deals with how the RL agent learns to choose
appropriate actions, or even how they might measure the
utility of an action. It can be approximated using a function
approximation. At the beginning, as it is expected, the
function approximation of the optimal value function is not
good. This means that the mapping from states to state values
does not correspond to the actual one. Thus, the primary
objective of learning is to find the correct mapping, from
which the optimal policy can be extracted.

While rewards are provided directly by the environment,
valuesmust be estimated and re-estimated from the sequences
of observations an agent makes over time. The different
methods of RL are concerned with the choice of the
function approximation of the value functions for efficiently
estimating values. The reinforcement learning methods will
be discussed next.
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3) METHODS
We can divide the RL methods into two main categories:
• the tabular solution methods, in which the state and
action spaces are small enough for the approximate
value functions to be represented as arrays, or tables.
In this case, the methods under this category can often
find the optimal value function and the optimal policy.

• the approximate solution methods, which only find
approximate solutions, but which in return can be
applied effectively to much larger problems.

There are three main classes of tabular solution methods
for solving Markov decision problems:
• dynamic programming (DP)
• Monte Carlo (MC)
• temporal-difference (TD) learning

These classes can be combined to extract the best features of
each of them. Details can be found in [46].

When the number of states becomes enormous, the tabular
solution methods are no longer suitable and the approach
changes to finding a good approximate solution using limited
computational resources. The main idea is to use a limited
subset of the state space and generalize to produce a good
approximation over a larger subset. Function approximation
is an instance of supervised learning and can be used to
approximate the optimal policy or to approximate value
function (although they may be much more efficient if both
the value function and the policy are approximated). RL with
function approximation by deep ANNs is called ‘‘Deep RL’’
(DRL) and many impressive developments, as in mobile edge
caching, have used DRL.

D. PERFORMANCE TARGETS
One important aspect of RL-aided edge caching is the
performance metric that is targeted in the corresponding
reward functions. As a result, in this survey, apart from
categorizing each work according to the network type,
we consider the main objective in their reward function, as a
grouping criterion.

a: CACHE HIT RATIO
Various studies aim to improve the cache hit ratio which is
defined as the ratio of cached files being requested by the
end users over the total number of files that are stored in
the cache. So, a high cache hit ratio corresponds to higher
user satisfaction and backhaul/fronthaul offloading and thus,
a more successful caching strategy.

b: SPECTRAL EFFICIENCY AND THROUGHPUT
Another important metric is related to the spectral efficiency,
given in bps/Hz, corresponding to the achieved data rate over
the available bandwidth. As more users and machines coexist
in the network, spectral resources become more scarce and
a higher frequency re-use is needed, e.g. by deploying
small BSs, relays and mobile ground and aerial APs. Such
heterogeneous topologies are complemented with caching at
the edge nodes in order to reduce backhaul/fronthaul usage,

bring data closer to the users and improve the throughput of
the network and spectral efficiency.

c: END-TO-END DELAY
As ultra-low services are highly desirable in the context of
the Tactile Internet and 6G networks, the end-to-end delay
is a critical QoS parameter that determines the efficiency of
an edge caching strategy. The reduction of end-to-end delay
can be achieved on the one hand, by reducing or avoiding the
number of hops that are needed to fetch the content from a
remote server and on the other hand, by bring data closer to
the end user and improve the quality of wireless transmission.

d: AGE OF INFORMATION
Recent studies, develop novel update scheduling strategies
for minimizing the age of information (AoI) of the cached
contents. In edge caching works, AoI quantifies how much
time has passed from the moment that the current file version
has been generated.

e: ENERGY EFFICIENCY
As the number of network nodes increases, achieving energy
efficient network operation is important both for sustainable
operation with reduced carbon footprint and reduced oper-
ational expenditure for the MNOs. The energy efficiency is
usually measured in bits/Joule, i.e., the number of bits that
are transmitted over the energy used for their transmission.
Popular techniques to achieve high energy efficiency include
power adaptation, switching off BSs, depending on the traffic
pattern and offloading by bringing data in proximity to users
through edge caching.

f: MOBILE VIRTUAL NETWORK OPERATOR REVENUE
When network slicing is adopted and the available spectrum
is exploited by mobile virtual network operators (MVNOs),
their revenue is determined by the amount of data that can
be transmitted and the level of edge computing resources that
are available. In such cases, the improvement of theMVNOs’
revenue is targeted and the system reward is formulated, as a
function of the access link signal-to-noise ratio (SNR), the
MEC server computation capability, and the cache state.

g: QoE
In video streaming applications, a successful edge caching
strategy is characterized by the user perceived QoE level.
Various QoS parameters affect the QoE in video streaming
services, such as jitter, packet delay and packet drop rate.
Thus, the edge caching reward function for video application
should consider as its objectives the accumulated reward by
improving the performance of these metrics.

IV. FIXED CELLULAR NETWORKS
Cellular architectures comprising fixed BSs represent a major
field where edge caching alleviates the burden of excessive
data traffic from users within their coverage. Two networking
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architectures will be discussed, namely, single-cell and multi-
cell multi-tier.

A. SINGLE-CELL TOPOLOGIES
Various works present RL-aided edge caching in single-cell
networks that can be also integrated in more complicated
environments, after necessary modifications.

1) ENERGY EFFICIENCY
Energy-awareness is an important issue in many edge
caching use cases. In a cache-aided MEC networks, the
paper in [47] studies task offloading, considering the joint
optimization of cache, computation and power allocation
for intensive computational tasks with stringent latency
constraints. Initially, optimization is formulated as a mixed
integer non-linear program (MINLP). Then, resource allo-
cation is modeled as an MDP and a DRL framework
is proposed, enabling the users and the AP to exploit
historical data and increase the resource allocation efficiency.
Furthermore, DRL provides a quasi-optimal solution with
low-complexity, even under large MDP state space. From
the simulations, it was shown that DRL reduces the energy
consumption, as the AP caching capability increases, while
for increasing computation capacity, the energy consump-
tion performance is near-optimal. Also, comparisons with
benchmarks without caching and different task computation
strategies emphasize on the important energy gains of
MDP-based DRL.

Another energy-aware solution has been investigated
in [48], [49] where non-orthogonal multiple access (NOMA)
has been employed. NOMA enables multiple users to
simultaneously offload their tasks to APs, operating as
edge computing servers and reducing the latency. Here, the
caching of computational results reduces network traffic,
as other users might request these results at a different time
while enjoying the same application. In this context, the
joint optimization of task offloading, computation resource
allocation and caching decisions is solved through a long-
short-term memory (LSTM) network. LSTM improves the
exploration-exploitation trade-off when predicting task pop-
ularity. Resource allocation relies on a single-agent Q-
learning algorithm while Bayesian learning automata (BLA)
multi-agent Q-learning handles task offloading. Simulations
depict the high prediction accuracy of LSTM. Compar-
isons of the single-agent Q-learning algorithm with three
benchmarks, i.e., local computation at the mobile users,
computation only at the AP and computation without
caching highlight important energy savings for the RL algo-
rithms for increasing caching and computation capacities.
Finally, BLA multi-agent Q-learning reduces the energy
consumption, compared to task offloading without BLA
capability.

Focusing on energy-aware cache update strategy in small
BSswith limited cache capacities, the works in [50], [51] con-
sider a scenario with random resource availability and content
requests. More specifically, time-varying and stochastic costs

are assumed, being associated with file fetching from the
cloud, incurring scheduling, routing and transmission costs.
Also, cost includes memory and energy consumption due to
caching at the small BS. Two cases are examined where in
the first case, costs and content popularity follow known and
stationary distributions, formulating a dynamic programming
problem [52] that is solved through value-iteration-based
RL. The second and more practical case considers limited
cache capacity and unknown cost distributions and employs
an online low-complexity Q-learning solver to determine the
content update strategy. The caching versus fetching trade-
off is evaluated for both cases with varying mean values
for the caching and fetching costs. It is revealed that the
online Q-learning without a priori knowledge of the statistical
properties of the costs and content popularity offers almost
the same average cost performance with value-iteration-
based RL and improved cache-fetch decision-making in both
stationary and non-stationary environments.

2) CACHING EFFICIENCY
Targeting to improve the data offloading and cache hit rate
performance, the paper in [53] presented DRL with deep
deterministic policy gradient (DDPG)-based training [54]
and the Wolpertinger policy [55], relying on three entities.
First, an actor function, receiving the cache state and the
content requests, as inputs and providing a proto-actor from
the set of valid actions. Then, K-nearest neighbors (KNN)
mapping is employed, expanding the proto-actor to a set of
valid actions from the action space. Finally, a critic function
refines the actor for selecting the action with the highest
Q-value from the expanded KNN set. Performance evaluation
for centralized caching and comparisons with LRU, LFU, and
first-in first-out (FIFO) policies reveal that actor-critic (AC)
DRL can improve the cache hit rate in the short-term and
avoid cache hit rate variations in the long-term.

Accurate cache update for a BS without content popularity
knowledge is investigated in [56]. This problem is cast as
an MDP where the BS cache status and the user requests
represent the state space, while the decision of either
keeping the current files or updating them define the action
space. So, an LSTM and external memory-based recurrent
Q-network (EMQRN)-based algorithm is developed to
enhance the cache hit rate. Comparisons include LRU and
FIFO without learning capabilities and the deep Q-network
(DQN) algorithm of [57]. From the results, it can be seen
that EMQRN leads to higher reward and faster convergence,
compared to DQN. Still, the implementation of EMQRN in
cooperative multi-cell topologies with cache status sharing
remains an open problem.

3) QoE IMPROVEMENT
In a single caching server network transmitting short video
content, a gradient-based DRL algorithm was developed
in [58]. Two issues are jointly tackled, i.e., video quality
selection and radio bearer (RB) control. The sequence of
user content requests is modeled as an MDP for triggering
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FIGURE 4. Average accumulated value for varying packet arrival rate [58].

RB control actions, such as setup, reconfiguration and
release. For each action, the decision is made by considering
the current state while training in settings with different
parameters enables DRL to be employed in other settings,
characterized by the same state space. Gradient method-
based DRL is evaluated against a greedy policy, serving the
request with the highest waiting time, and transmitting it
at the highest video quality, and a minimum quality policy,
serving the maximum number of requests at the lowest
video quality. By considering the use of more RBs as cost
and an increased video quality level as reward, different
arrival rate cases are tested and, as it is observed in Fig. 4,
DRL outperforms the greedy policy for rates between 1.8 to
2.4 while for rates below 1.6, the greedy method provides
better performance, at a higher complexity. It is noted that
generalizing the gradient-based DRL for more complex
communication scenarios is an open issue.

Focusing on content-centric caching for improved QoE,
the authors in [59] developed a DRL-based decision-making
model, employing DNN for Q-value estimation. Optimiza-
tion considered both latency and storage costs, outlining the
negatively proportional relationship of the two metrics with
QoE. As the network operates in a dynamic environment,
DNN might not accurately estimate the Q-value and thus,
fixed target network (F), experience replay buffer (E), and
adaptive learning rate (L)-based DRL is proposed, leading to
FEL-DRL. Fixed target network leads to stable convergence
by using another neural network with fixed parameters
which are periodically updated, according to the estimated
network values. Meanwhile, experience replay avoids the
temporal correlation of different training episodes, creating a
dataset from the agent’s experience and randomly using data
batches for network training. Comparisons usingMatlab˙ and
TensorFlow showed that FEL-DRL achieves an average QoE
score of 64, while DRL provided a score of 62 while other
benchamrks, i.e. AC-DRL, FE-DRL and RL provided QoE
values below 60.

FIGURE 5. Centralized deep learning architecture in the context of a
two-tier HetNet environment.

B. MULTI-CELL TOPOLOGIES
Rl-aided edge caching in multi-cell multi-tier networks has
been investigated investigated in several works.

1) AGE OF INFORMATION REDUCTION
The authors in [60], [61] focus on cache update scheduling for
age of information (AoI) minimization, in a two-tier HetNet
where small cells act as content servers for dynamic content
delivery, as shown in Fig. 5. AoI measures the elapsed time
since the generation of the current file version [62], [63].
Content caching is formulated as a constrained MDP and
enforced decomposition is employed for dynamic cache
update. AoI is minimized by usingmultiple queues tomonitor
user requests. As the state space of theMDP subproblems can
be large, DRL agents are trained for optimal cache update.
Performance evaluation results, using PyTorch suggest that
DDPG-based DRL offers improved convergence and reduced
AoI. In the single dynamic content scenario, DDPG provides
improved convergence, compared to DQN [57], while for
multiple dynamic contents, the average AoI is reduced by
30% versus periodic update without considering the user
request queues [64].

2) DELAY REDUCTION
The reduction of transmission delay and cache replacement
cost in the long-term, in a two-tier small cell network is
studied in [65]. Wireless coded caching is employed to
distribute coded file fractions at different network nodes,
thus avoiding the need for large caches. First, historical
user file requests are exploited for predicting the future
ones. In the next phase, a supervised deep deterministic
policy gradient (SDDPG) approach based on both supervised
learning andDRL solves the wireless coded caching problem.
Aiming at accelerating the learning process, supervised
learning is invoked to pre-train the neural network by solving
an approximate cost minimization problem at each slot.
Performance evaluation highlights that SDDPG reduces the
total network cost, compared to short-term cost optimization.
In addition, SDDPG exhibits a small performance gap,
compared to the case of knowing the actual number of
requests, serving as a performance upper-bound.

The MAB framework is adopted in [66], considering the
transmission delay reduction over the case without caching,
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as the reward. Under unknown user preferences, the proposed
collaborative caching schemes minimize the accumulated
transmission delay over a finite time horizon. This work
extends [67] which presented distributed and collaborative
multi-agent MAB algorithms in stationary environments.
Here, two stationarity cases are investigated for the file library
and user preferences. For the stationary case, a fixed file
set and time-invariant user preferences are considered and
two high-complexity MAB algorithms are presented. Their
regret performance is bounded by O(logTtotal), where Ttotal
denotes the total number of time-slots. Meanwhile, a lower
complexity and distributed MAB solution is developed,
considering that each small cell acts independently. In the
stationary setting, an edge-based collaborative multi-agent
MAB algorithm is proposed, relying on coordination graph
edge-based reward assignment. Then, in the non-stationary
case, the file set and user preferences dynamically vary
and modified multi-agent MAB algorithms are given. More
specifically, the exploration duration is reduced by assigning
larger initial values to the actions of adding new content to the
varying file set in each time-slot. Also, the upper confidence
bound (UCB) terms are modified, as the small cells are
unaware of the reward upper bound. Simulations show that
the MAB algorithms reduce the delay, compared to LRU and
LFU, and achieve a narrow performance gap, compared to a
greedy algorithm for varying communication distance, cache
size and mobility.

In [68] AC-based DRL joint user scheduling and content
caching is proposed for delay minimization. In greater detail,
the actor adopts stochastic caching, abiding to the Gibbs
distribution and parameters are updated through gradient
ascent by observing the environment states. The critic
evaluates the actor policy and its rewards, in terms of delay,
using DNN for value function approximation (VFA) and
gradient estimation. The convergence of the AC-based DRL
scheme is evaluated in a two-tier network for different actor
and critic learning rates, highlighting that a low actor learning
rate improves the convergence. Also, comparisons with AC-
based DRL without caching and AC-based DRL without
scheduling indicate 40% and 56% higher total rewards for
the proposed caching scheme, respectively.

Joint delay and blockchain-based security optimization
has been presented in [69], focusing on (machine-to-
machine) M2M communication. As blockchain systems
require increased computation time to complete the smart
contracts, delay requirements might not be met [70]. So,
system performance is enhanced through duelingDQN-based
decision-making, regarding caching, computing and security.
The dueling architecture allows DQN to efficiently learn the
action value through the separate estimation of the state value
and the reward of each action, leading to higher caching
reward, reduced data computation overheads, and efficient
blockchain processing. Performance comparisons against
conventional DQN, a greedy-based strategy and random
resource allocation for varying cache and block sizes, delay
constraints and number of machine-type devices, showed

reduced latency, and higher rewards for dueling DQN-based
caching.

3) CACHING EFFICIENCY
AC-based DRL is employed in [53] for decentralized edge
caching operation and improved cache hit rate performance.
Comparisons with LRU, LFU and FIFO caching policies
shows that AC-based DRL offers higher cache hit rate and
reduced transmission delay by considering user location and
enabling inter-cell communication in order to avoid caching
the same content when coverage areas overlap.

The optimization of content caching and delivery policy
under non-stationary content libraries through a user-assisted
RL algorithm is the subject of [71]. The network utility
consists of backhaul traffic offloading, cache hit rate, content
retrieval and delivery. The learning-based algorithm exploits
users’ caches for offload the small cells during peak hours.
The BSs’ caches are divided in two parts where the first part
stores new content from the users’ caches, while the second
part is used for content server updates. Content caching and
delivery is formulated as a MAB problem, considering the
spatio-temporal request dynamics. Also, the content library is
modeled as a multi-arm system with unknown and stationary
rewards. A central unit sequentially determines content
caching, exploring possibly popular and rarely cached files
and exploiting the empirical knowledge of caching content,
yielding the highest rewards up to this point. MAB-based
content caching and delivery operates in three phases, where
in the first phase, content delivery takes place, then, in the
second phase, one part of the small cell caches is updated
with content from the users and finally, in the third phase, the
other part of the caches is updated from the content server.
Comparisons with benchmarks without a user-assisted phase
highlights that the MAB-based algorithm is more robust
against the spatio-temporal request variations and benefits
from the use of the users’ caches.

Distributed content placement for alleviating the traffic
load from the backhaul infrastructure in a dense small cell
network was studied in [72]. As the problem of optimal
content placement is shown to be NP-hard, independently
of knowing the file popularity. Thus, a learning-based coded
caching solution is proposed where the small BSs learn the
file popularity profiles by using the historical content request
data. The learning framework considers the connectivity of
users with the small BSs and relies on combinatorial MAB.
The MAB-based learning framework can adapt to temporal
content popularity variations, exploring the caching of new
files and discovering their popularity versus exploring the
caching of already-known high popularity files. For the
reception of distributed cached contents, rateless coding is
adopted, guaranteeing high decoding performance, as long
as a specific fraction of the coded symbols has been
received. Performance evaluation depicts that MAB-based
distributed caching obtains higher rewards, compared to a
local caching scheme neglecting the network connectivity
status and uncoded caching.
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The goal of [73] is to improve edge caching performance in
networks where infrastructure providers lease their physical
resources, in the form of BS storage and backhaul capacity
to MVNOs. By investigating the joint optimization of cache
leasing and content popularity prediction from the MVNOs’
perspective for profit maximization, a Q-learning algorithm
provides DL models with optimized hyper-parameters. The
generated DL models are employed to predict the parameters
of content popularity, i.e. future cache demand and request
count. Using this information, the DL models compile lists
with contents that should be cached at the BS. Performance
evaluation focuses on the cache hit probability and backhaul
usage and three different configurations for the unknown
layer of the DL model, i.e., convolutional neural network
(CNN), LSTM and convolutional recurrent neural network
(CRNN). Feature selection results suggest that LSTM pro-
vides superior training and validation accuracy with reduced
training time. Moreover, the best LSTM configurations and
random caching are compared against the case without
caching, showing a 16% cache hit probability improvement,
compared to 12% by the random scheme, and a 17% backhaul
usage reduction, compared to 12% by random scheme.

An extension to the RL-basedmeta-learningwith enhanced
searching space design and autonomous DL model gen-
eration of [73] with optimized hyper-parameters is given
in [74], comprising two parts. In the first part, a cloud-based
master meta-learner provides the DL models and decides
which one to deploy. The second part involves a slave meta-
learner located at each small BS, using the best DL model
for popularity prediction after tuning its parameter through
localized information. Simultaneously, the slavemeta-learner
provides prediction accuracy feedback to the master meta-
learner, triggering the latter to explore a different model,
in case of suboptimal performance. The RL-based meta-
learning scheme is implemented, using Tensorflow [75] and
Keras [76] and achieves a 10% and 30% cache hit rate
improvement over the scheme in [73] and random caching,
respectively.

MNO net profit maximization through DRL-based caching
is presented in [77]. Here, contents are proactively pushed
and cached at the users’ devices, relying on RL for predicting
the individual user behavior. Since the joint problem of
proactive pushing and recommendation is characterized by
large action and state spaces, a decomposition approach
is followed. First, the recommendation subproblem focuses
on increasing requests and providing revenue opportunities
while the pushing subproblem targets transmission delay
minimization. Considering the inter-dependency among the
two subproblems, a double deep Q-network (DDQN), based
on [78] is employed. Simulations are conducted to assess the
performance of the duelingDDQNversusDDPG [54], advan-
tage AC [79] and proximal policy optimization (PPO) [80].
Results highlight that dueling DDQN converges much faster
while solving the recommendation sub-problem and provides
the highest rewards. Even though, PPO provides almost
the same reward as dueling DDQN, it requires around

FIGURE 6. Federated learning architecture for a multi-cell network,
comprising K mobile edge RAN environments.

43% additional training sessions. Meanwhile, the pushing
policy exploits the user mobility pattern and the propagation
characteristics, proactively pushing content under favorable
channel conditions.

In [81], DRL-based network resource management for
improved cache hit rate and computation offloading is
presented. In mobile edge networks, the high amount of data,
parameters and performance targets demands distributed
DRL agent training. Here, two important aspects determine
the appropriate distributed DRL architecture. First, although
maintaining a DRL agent in every network node can provide
improved performance, in practice, training will struggle
due to differences in task load and network states, time
constraints and data unavailability. Second, the distributed
DRL architecture should overcome data imbalance and
alleviate privacy concerns. So, FL is employed for distributed
DRL agent training, reducing communication costs and
offering improved privacy and security [25]. Fig. 6 shows a
multi-cell network with K RANs, adopting FL for exploiting
local model updates to improve the efficiency of the global
collaborative model. The proposed In-Edge AI, avoids
constant data uploading in the uplink, as FL relies on locally
stored data and only calculates updates to the global model of
the coordinating central node. Simulations compare DDQN
with FL and centralized DDQN without FL, as well as LRU,
LFU and FIFO. It is observed that DDQN with FL provides
almost the same hit rate performance, as centralized DDQN
and outperforms LRU, LFU, and FIFO. Moreover, since the
simulated wireless topology is assumed to support the upload
of the large amount of training data in the centralized DDQN
approach, in practice, delay performance will be degraded.
On the contrary, the small volume of data for FL-based
training through the global model updates will slightly affect
the delay.

In cases where user preferences and mobility patterns are
unknown, the authors in [82] proposed a temporal-spatial
recommendation policy addressing non-peaky local content
popularity. This policy leads users to request their desired
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files in an efficient way, i.e., during specific time-slots
and through appropriate BSs. Since a limited number of
requests might hinder local popularity prediction, a Bernoulli
mixture model is adopted to learn user preference and request
probability. Then, the recommendation and caching policies
are jointly optimized through RL. Nonetheless, this joint
problem is characterized by large state and action spaces.
Thus, it is decomposed into three subproblems, tackling
user preference and file request probability estimation with
or without recommendation, caching policy optimization,
independently of recommendation, and finally, DRL-based
recommendation policy optimization. Performance evalua-
tion for a network with three BSs and a library of 200 files
is presented. Benchmarks included random recommendation,
no recommendation, global recommendation, based on the
estimated global file popularity and local recommendation,
based on aggregating the estimated local file popularity.
It is shown that DRL overcomes individual user and
aggregated preference estimation errors, better adapting
the caching policy to user mobility through improved
recommendation.

In [83], a multi-cell multiple-input multiple-output
(MIMO) system is studied where the locations of the BSs
are modeled through a Poisson point process (PPP). Given
a content popularity profile, the average success probability
of the system can be derived under the probabilistic caching
assumption. The analysis of the average success probability
showed that for inference limited systems, it is not affected
by BS density. Furthermore, a Q-learning framework is
developed to formulate the problem of dynamically learning
the content placement strategies, targeting to maximize the
average success probability and minimize the cache refresh
rate. Through Q-function approximation the number of
variables needed was reduced and simulations on a synthetic
dataset showed that computation time can be reduced without
affecting the performance.

4) SPECTRAL EFFICIENCY
Pushing and caching popular services in a three-tier network,
consisting of broadcast BSs, cellular BSs and routers is
studied in [84]. The broadcast BS is responsible for delivering
the services and the caches of the routers are used to bring the
content closer to the users. In case, a user does not receive its
desired content, the router might act as a relay to establish
connectivity with another router or a handover to a cellular
BS takes place. Targeting the maximization of the equivalent
network throughput, service scheduling is modeled as an
MDP. Since the large state space entails excessive complexity,
deep Q-learning (DQL) is used to derive the optimal policy.
Towards addressing the large state space issue, the Q-function
is approximated and modified using experience replay and
target value update over several time steps. Performance
comparisons with the algorithm of [85] and centralized
caching with dynamic programming shows that for different
popularity Zipf factors, DQL provides significantly higher
equivalent throughput, especially for Zipf values below 1.5.

Edge caching through accurate content recommendation,
based on personalized preferences is examined in [86].
Localized caching is presented, relying on the individual
content request probability (ICRP) for content placement
optimization and throughput maximization. This scheme is
based on Bayesian learning, namely, constrained Bayesian
probabilistic matrix factorization, considering the rating
matrix imbalances, towards improving the prediction accu-
racy of unknown content ratings. This process facilitates
the evaluation of personal preferences to obtain the ICRP.
In the next step, RL exploits the ICRP and physical distance
among caches and users for content placement, resulting
in a deterministic caching algorithm (DCA). Further gains
are provided through D2D cooperation for reduced delay
and improved ICRP estimation. DCA is compared against
random caching and probabilistic caching, in terms of root
mean square error prediction, hit rate and system throughput.
Comparisons reveal that DCA offers 90% increased through-
put versus random caching, while D2D cooperation reduces
the delay by 15.5% over the non-D2D case.

The work in [87] studies content placement at BSs for
maximizing the average success transmission probability.
The authors consider a network with BSs located, as a two-
dimensional homogeneous PPP, while content popularity is
assumed to be known and Zipf-distributed. The cost function
is formulated using the average success probability and an
online Q-learning approach is presented and evaluated for
both small and large action spaces, depending on the number
of cache size, content size and popularity profile set cardinal-
ity. Results indicate that for small action spaces, Q-learning
converges to the optimal policy after 13 iterations while
significantly more iterations are needed for convergence for
large action spaces, i.e., around 2× 103 iterations.

Aiming to mitigate the impact of tidal effects in mobile
networks, i.e., increased network load in peak hours and
low bandwidth utilization in idle periods, the authors in [88]
propose proactive pushing and caching when the network is
underutilized. This joint problem involves a transmission cost
function, representing bandwidth fluctuation. Minimizing
bandwidth fluctuation improves bandwidth utilization and
energy efficiency and avoids duplicate data transmissions.
So, hierarchical RL tackles the decomposed pushing and
caching subproblems. The first subproblem is related to
user cache optimization, employing Q-learning VFA. For the
second subproblem, DRL is used to improve BS caching and
tackle dimensionality issues. The performance of hierarchical
RL is compared to policy-based schemes, such as LRU,
LFU and local most popular (LMP), in three scenarios, i.e.,
caching at the BS, caching at the users, joint BS and user
caching. It is observed that hierarchical RL outperforms
the other policies in all three cases, while its advantage is
significantly increased in the joint BS and user caching,
efficiently utilizing the wired and wireless network.

The joint allocation of networking, caching, and computing
resources in smart cities applications is examined in [89].
Assuming a dynamic virtualized networking environment
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where MVNOs manage multiple BSs, MEC servers and
content caches, an excessive number of system states exists
and traditional optimization faces difficulties in deriving
the optimal policy. As a result, DRL is invoked, using
DQN for Q-VFA, determining the resource allocation
of networking, caching and computing resources. The
reward function objective, corresponding to the MVNO’s
revenue consists of the access link SNR, the MEC server
computation capability, and the cache state. Simulations,
using TensorFlow evaluate DRL and alternative versions
without caching, MEC offloading or virtualization. Results
show that DRL offers a significantly higher total utility,
independently of learning rate and the number of required
central processing unit (CPU) cycles per task.

5) QoE IMPROVEMENT
Resource allocation and user association in a network provid-
ing live video streaming service is the subject of [90]. As the
maximization of the QoE is prioritized, DDPG-based caching
is presented, over traditional Lagrangian-based optimization.
Initially, an optimization problem is formulated and shown to
be non-linear and NP-hard. In order to convert it to a linear
problem, binary decision variables are used, corresponding
to BS caching content and user request of a specific video
quality. In order to find a near-optimal solution, DDPG
alternatively keeps one variable fixed and then, it relaxes both
binary variables to be continuous. However, it is observed
that in the user association/video quality subproblem, the
sub-gradient method is inefficient and in some cases, only
a locally optimal value might be obtained. So, DDPG is
employed, first observing the state of resource utilization and
determining the prices for each possible action. In the next
step, the users are prompted to associate with the BSs, and
request a specific video quality. In this way, the resource
utilization is re-calculated based on the users’ decisions
and the QoE level is acquired as reward, facilitating the
DDPG agent to evaluate the action and set appropriate NN
weights. DDPG-based learning is evaluated against sub-
gradient-based pricing [91] and the solution in [92]. It is
concluded that DDPG offers higher QoE as the number of
users increases, independently of resource availability.

The provision of enhanced QoE, while avoiding exces-
sive energy consumption is studied in [93]. A software-
defined network (SDN) is investigated, using a monitoring
mechanism, processing several parameters related to BS
cache, as well as user buffer status and video transmissions
parameters. QoE and energy performance optimization is
modeled, as a constrained MDP that is transformed into
an unconstrained MDP by adopting the T -period drift-
plus-penalty concept. The unconstrained MDP problem is
tackled through asynchronous advantage actor-critic (A3C),
employing its agents to run on a multi-core CPU with each
thread processing one agent and providing a replica of the
environment. Then, the globally shared parameter vector is
asynchronously updated by using the cumulative gradients
of multiple agents after a specific time period. Performance

evaluation, using PyTorch and comparisons with DQN and
traditional convex optimization are presented. A3C exhibits
faster convergence than DQN and requires half the energy
to provide the desired QoE. Moreover, for varying BSs
and users numbers, A3C always outperforms DQN while
convex optimization fails to follow network dynamics and
falls behind both learning algorithms.

An additional work, focusing on QoE improvement and
the reduction of latency for users requesting video content
and backhaul usage is presented in [94]. Here, multi-agent
AC DRL-based caching is developed, treating each network
edge, as a cooperative learning agent and avoiding the large
action spaces of centralized single-agent approaches. The
proposed multi-agent collaborative caching (MaCoCache)
enables each agent to consider not only its caching strategy
but also, that of its neighbors, while relying on the AC
algorithm. Also, to better adapt to network dynamics and
exploit historical data, LSTM is integrated with MaCoCache.
The proposed caching framework is compared against LRU,
LFU and other learning-based alternatives, such as DRL
without cooperation between agents and joint-action learners
(JAL), utilizing stateless Q-learning-based caching [95]. It is
revealed that MaCoCache offers 73%, 50%, 21% and 14%
latency and 103%, 98%, 59%, 26% backhaul cost reduction
versus LFU, LRU, DRL and JAL, respectively, as well as 13%
and 7% improved edge hit ratio, compared to DRL and JAL,
respectively.

Table 3 includes the studies on RL-aided caching in fixed
cellular topologies, highlighting their main performance
targets and the adopted RL approach.

Lessons learned: RL-aided edge caching in fixed cellular
networks can provide improved performance over policy-
based approaches, such as LRU, LFU and FIFO, indepen-
dently of the considered reward function objective.Moreover,
MAB-based RL can support practical scenarios without a
priori knowledge of user preferences and mobility patterns.
Also, there exist some works that developed RL-aided
proactive content pushing and recommendation solutions
[77], [88] but additional research is needed in this field,
due to the significant offloading potential, alleviating the
impact of network load variations. Another area that needs
further efforts is related to SDN-based architectures, as only
the work in [89] has proposed a relevant RL-aided edge
caching solution. Overall, in multi-cell networks, distributed
content caching operation must be better supported, as inter-
cell coordination entails increased complexity. Moreover,
FL approaches should be further studied, since maintaining
DRL agents at each BS might be infeasible due to task
load variations, time constraints, privacy issues and data
imbalance. Finally, highly spectral efficient access schemes,
such as user grouping for NOMA have not been extensively
studied in conjunction with RL-aided edge caching.

V. FOG RADIO ACCESS NETWORKS
C-RANs provide flexible network deployment by relying on
cloud-based centralized baseband units (BBUs) for signal
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TABLE 3. List of works focusing on reinforcement learning-aided caching
for fixed cellular networks.

processing and low-complexity remote radio heads (RRHs)
for wireless access. At the same time, C-RANs may

FIGURE 7. A mobile wireless network relying on the F-RAN architecture.

stress the fronthaul due to the massive number of content
requests. Thus, F-RANs have been proposed, as a promising
technology towards reducing the load of the fronthaul in
cellular networks. TheAPs in F-RANs and the overall F-RAN
architecture is illustrated in Fig. 7 where F-APs are partly
responsible for baseband processing, while offering edge
storage and computing resources. The adoption of RL-aided
caching and resource management in F-RANs represents
an important research area that has attracted with various
contributions recently.

A. DELAY REDUCTION
In [96], a network comprising multiple cache-aided F-APs is
considered, targeting the minimization of the average delay
under temporal channel variations, user mobility and varying
user preferences. For this purpose, the cache update content
process at the F-APs is model as anMDP, while dueling DQN
is employed to solve the MDP problem without knowing the
state transition probabilities. DuelingDQN estimates the state
value and the rewards of the different actions, facilitating
cached content replacement with appropriate contents in each
transmission period. Comparisonswith policy-based caching,
including FIFO, LRU and LFU shows that the dueling DQN
increases the average cache hit rate and reduces the average
transmission delay for varying storage size and number of
users.Meanwhile, important performance gains are harvested
when a joint radio resource management (RRM) and cache
update policy is developed.

Another work targeting latency minimization in F-RANs
was presented in [97]. The joint optimization of proactive
caching and power allocation in the F-RAN downlink with
multiple APs and a DRL controller at the centralized cloud
is studied. It is shown that optimizing the latency while
considering user QoS, storage and transmit power resources
results in a non-convex mixed-integer nonlinear fractional
programming (MINLFP) problem. So, latency minimization
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is modeled as anMDPwithout a priori knowledge of the state
transition probabilities and a DQN-based algorithm derives
the optimal solution. DQN is implemented using TensorFlow,
simulating a network comprising 10 F-APs and 5 RRHs
with 30 users. Comparisons with benchmarks, relying on
weighted minimum mean square error, Q-learning, fixed,
and random resource allocation reveal that DQN achieves
improved convergence while latency is reduced by 18% to
49% compared to the other schemes. Meanwhile, its cache
hit rate is higher than that of LFU, LRU and FIFO at 89%,
while LFU provides 81% hit rate and the other two policies
provide 75% hit rate.

In an F-RAN, comprising a cloud-based BBU and multiple
cache-aided enhanced RRHs (eRRHs), the authors in [98]
target the delivery latency minimization over X-haul links
when the file popularity is time-varying and unknown.
The proposed model-free RL-based scheme relies on linear
VFA, adaptively activating the backhaul or the fronthaul
at each transmission period. Backhaul activation updates
the cache content at the eRRHs, reducing the latency at
future transmission periods, while fronthaul activation leads
to cooperative transmissions, reducing the latency at the
current transmission period. Performance evaluation when
the BBU is located at the cell center while eRRHs and users
are circularly placed shows that for small eRRH cache sizes,
i.e., less or equal to 4 files, fronthaul selection guarantees
lower latency, due to the limited caching. On the contrary,
for cache sizes larger than 4 files, backhaul activation is
superior. Overall, RL provides the lowest latency compared to
other schemes, relying on only fronthaul/backhaul selection,
greedy fronthaul/backhaul selection and offline caching of
the most popular files.

Further service delay reduction results were given in [99]
where the joint optimization of content caching, computation
offloading, and radio resource allocation in fog-enabled
IoT is studied. AC-based learning is adopted, relying on
DNN for Q-value VFA of the critic, while the actor policy
is represented by another DNN. Also, RL divergence is
mitigated by employing fixed target network and experience
replay. At the same time, the Natural policy-gradient method
is used, being more efficient than Standard policy-gradient
and guaranteeing that convergence to the local maximum is
avoided [100]. Results for a library of 1000 different contents
highlight that the proposed DRL solutions offers reduced
service delay for cache sizes below 500 contents, still outper-
forming conventional content popularity-based caching for
cache sizes larger than 500 and up to 1000 contents where
identical performance is observed.

In [101], the stress on the fronthaul link is alleviated
and transmission delay is reduced through a cooperative
DRL-based strategy. More specifically, cooperative caching
among the F-APs is employed. Initially, content popularity
prediction is performed by relying on the topic model
which identifies popularity growth patterns. As a multi-
variable reward function is formulated, DRL content caching
strategy is used to determine the content placement policy

by exploiting the content popularity prediction results.
As observed in the performance evaluation results, DRL
reduces the average transmission delay compared to policy-
based algorithms.

B. CACHING EFFICIENCY
Cache hit rate improvement in F-RANs is the main topic
of [102]. Here, a distributed edge caching scheme is
developed, relying on Q-learning with VFA for reduced
complexity and improved convergence. Since unknown
content popularity is considered, a content request model
based on hidden Markov process is proposed to identify the
characteristics of the varying spatio-temporal traffic requests.
At the same time, the distributed learning scheme enables
each F-AP to independently determine the optimal caching
policy, thus avoiding network coordination overheads. Per-
formance evaluation in a network with 20 F-APs, each having
a fixed cache size of 5 files, shows that Q-VFA-learning better
adapts to content popularity fluctuations and dynamic user
arrivals and departures from the network, compared to LRU,
LFU and Q-learning without VFA.

Distributed edge cachingwith dynamic content recommen-
dation is the topic of [103]. The authors aim at determining
an efficient joint caching and content recommendation policy
to reduce the cost of cache replacement in F-APs when user
requests datasets are not available. Thus, a per-user request
model is presented to characterize the fluctuation of requests
after content recommendation. Next, a DDQN-based caching
algorithm is formulated to reduce the large state and action
spaces and guarantee faster convergence. Simulations reveal
that the DDQN-based policy offers the highest net profit
compared to LRU, LFU, Q-learning and DQN alternatives,
for different cache sizes.

C. SPECTRAL EFFICIENCY
The improvement of QoS given the fluctuations of user
preferences is investigated in [104]. In order to better exploit
the caching resources of F-APs, random linear network
coding (RLNC) is used to divide the files into subfiles
and distribute them across the F-APs. By exploiting the
accumulated user requests and considering the successful
transmission probability as the reward for the operation of
DRL, the optimal caching strategy is derived. Simulations,
using TensorFlow reveal that the integration of RLNC
into the proposed learning solution can save significant
caching resources and increase the successful transmission
probability in F-RANs, compared to uncoded caching.

The reduction of the fronthaul load is the main target
of [105]. In order to improve the content placement pro-
cess with unknown file popularity, a two-phase procedure
is proposed. In the first phase, unsupervised learning-
based feature extraction is employed to extract the content
popularity from the frequently collected user requests.
In the second phase, DRL with transfer learning is adopted
and exploits the predicted file popularity of the previous
phase to determine the optimal content placement strategy.
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Performance comparisons with traditional neural network-
based algorithms indicate that the unsupervised learning-
based popularity prediction scheme improves the prediction
accuracy, independently of the time-slot duration, while DRL
with transfer learning outperforms both LRU and LFU,
in terms of fronthaul load reduction.

In [106], the joint optimization of caching and radio
resources is targeted. Following a hierarchical approach,
a cloud-based cache resource manager aims at maximizing
the system throughput and minimizing the storage cost at the
F-APs, in the long-term. Meanwhile, F-APs are responsible
for RRM in the short-term, considering content placement,
channel state information (CSI) and user requests. Moreover,
interference mitigation is guaranteed by enabling the F-APs
to form clusters and perform joint transmissions to the
users. In order to achieve improved performance, multi-
agent RL is employed, creating one agent per each file and
F-AP pair, jointly learning the caching strategy by utilizing
historical CSI and user requests data provided by the network
information server. Performance evaluation shows that the
efficiency of the multi-agent RL-based resource management
surpasses that of other schemes, based on full caching,
no caching and fixed probability caching.

Joint user association and content placement for network
payoff maximization is the topic of [107], in a two-tier
network, consisting of a massive MIMO macro BS and a
group of F-APs. Here, network payoff is defined as the
ergodic rate performance utility minus the fronthaul cost for
cache replacement. In this setting, game theory is invoked,
formulating a hierarchical Stackelberg game where at short
time scales, users act as followers, dynamically adjusting
their F-AP selection, according to content placement status,
while at long time scales, the F-APs act as leaders, updating
their caches, based on the user association status and the
content popularity prediction of a central unit, located at the
core network. Towards providing low-complexity and accu-
rate popularity prediction, a stacked auto-encoder (SAE)-
based scheme is adopted. Regarding content placement,
a DRL-based algorithm, extending [54] is developed. The
DRL architecture is based on online DQN learning where
a greedy algorithm selects an action from the state space
and offline DNN and replay memory creation, executing
specific optimization and storing historical information.
Performance evaluation shows that DRL offers an average
prediction accuracy of 90%, while baseline DNN- and
CNN-based algorithms achieve 80% and 70% accuracy,
respectively. Finally, compared to LRU and LFU, DRL
yields the highest reward, better capturing the effect of
user requests and the amount of data routed through the
fronthaul.

Table 4 summarizes the works on RL-aided caching in
F-RANs, their objectives and corresponding RL techniques.

Lessons learned: F-RANs must maintain low fronthaul
load in order to avoid excessive delays. Thus, DRL with
transfer learning provides fronthaul load reduction and
adaptive fronthaul/backhaul activation for content placement

TABLE 4. List of works focusing on reinforcement learning-aided caching
for Fog RANs.

guarantees low end-to-end delay. As RRHs might be
resource-constrained, transfer learning can complement
RL-aided solutions towards high edge caching efficiency.
In general, most works on F-RANs develop joint RL-
aided resource allocation and content update schemes,
outperforming policy-based caching. Hybrid schemes
offer high offloading efficiency through unsupervised
learning-based popularity prediction and DRL-based content
placement [107]. Also, distributed learning employs F-APs
to independently determine the optimal caching policy,
thus reducing network coordination overheads. However,
RL-aided edge caching for improving the energy efficiency
of F-RANs has not been extensively investigated, while
mobility-aware algorithms are mainly studied in [96] and a
gap exists regarding highly mobile F-RAN environments.
Finally, RL-aided proactive content pushing and recommen-
dation that can mitigate network load variation, especially in
the fronthaul of dense F-RAN settings have not been studied.

VI. COOPERATIVE NETWORKS
Cooperation among network nodes has been considered as a
viable means for enhancing the quality of communication by
improving the wireless conditions through increased diversity
and intelligent transmission scheduling [37], [108], [109].
Furthermore, data buffering at edge nodes, in the form of
dedicated relays or user devices provides reduced outages
and higher data rates [38], [39], [110], [111]. In the context
of edge caching, cooperative schemes can be applied both
in content caching in a distributed manner, as well as by
employing user devices to cache content of other users.

A. COOPERATIVE CACHING
A general network architecture where cache-aided BSs
cooperate and share data through X2/Xn interface in order to
avoid constant data fetching from the core network is depicted
in Fig. 8.
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FIGURE 8. A network of cooperating BSs where data from the local cache
is shared through the X2/Xn interface and constant data fetching from
the core network is avoided.

1) DELAY REDUCTION
In [112], the authors solve the problem of content caching,
using multi-agent AC DRL in which edge nodes adaptively
learn their caching policies. More specifically, in dynamic
environments, CognitiveCache is proposed, enabling edge
nodes to learn their best caching policies and collaborate
with their neighboring nodes to optimize content placement,
thus reducing latency and transmission cost. RL tackles
volatile and unreliable environments where there is no
global knowledge. Single-agent DRL-aided caching has been
proposed in [113], [114] where a single edge node makes
suitable caching decisions. This process requires from every
single node to have its own caching policy and a single
central agent to make the global decisions resulting in a huge
action space [94]. CognitiveCache offers better convergence
than [94] while comparisons with DQNCache [114], Prob-
Cache [115], LRU and LFU show that it reduces latency by
33%, 47%, 66%, 71% and transmission cost by 23%, 75%,
83% and 87%, respectively.

A slightly different problem is considered in [116] where
the capability of users to offload computing tasks to edge
computing nodes is examined. In this context, the coordi-
nation between edge computing nodes for the management
of the compute and cache resources is investigated. Several
challenges have to be addressed, such as the uncertainty of
the computing task, the workload scheduling of a single node
but also, the resource allocations of multiple nodes during
the computation of a collaborative task. Last but not least,
low latency of collaborative computing has to be ensured.
A simulation environment has been developed in Python and
DDQN is compared against dueling DQN, DQN and Natural
Q-learning, in terms of task computation failures, revealing

better performance, due to improved caching decisions,
resulting in reduced delay.

Single and joint transmission of nodes are considered
in [117] where storage- and transmission-level cooperation is
exploited to optimize content caching and updating for video
delivery. The authors formulate the problem, as an MDP
where the reward is mapped to the level of delay reduction.
They develop an online RL algorithm to search for the
optimal caching policy, updating cache contents in an online
manner. In addition, the proposed Q-learning algorithm is
extended with linear approximation, thus facilitating its
application in settings with a large number of contents.
Comparisons in terms of normalized delivery delay are given
against two conventional optimization algorithms. The first
algorithm has been presented in [118] and allocates part of
the caches in each cluster to store the most popular content in
every edge BS, while the remaining parts cooperatively cache
different partitions of the less popular content at different
nodes. The second algorithm is the FemtoCaching strategy
of [119], employing nodes with low-rate backhaul capacity
but large storage to cache popular video content while non-
cached files are transmitted by the cellular BS. Results
suggest that the proposed strategy provides a delay reduction
of at least 6% and 15%, compared to the first and second
algorithm, respectively.

One of the main DRL challenges is that its agent must
observe enough environmental features to ensure decision
accuracy. The authors of [9] propose AC-based DRL for
multi-cell and single-cell cooperative networks where BSs
compete with each other for wireless access and also coop-
erate towards delay reduction. Here, the agents decide their
individual caching actions while cooperating with each other,
resulting in a centralized critic network and a decentralized
actor network. In this framework, the agents update the actor
network with their observations and the critic network with
the complete state space. Compared to LRU, LFU and FIFO
in a scenario with time-varying content popularity, the AC-
based DRL offers the best long-term performance and each
time the popularity distribution changes, it is able to converge
to the previous delay performance level.

The decentralized cooperative caching towards content
access latency minimization is the topic of [120]. The
proposed solution relies on FL and DRL and uses two
training rounds. During the first round, the BSs learn a shared
predictive model, using training parameters, as the initial
input of local training. In the second round, the BSs upload
the near-optimal local parameters, as input to the global
training. The proposed FL and DRL solution is compared
against LRU, LFU, FIFO, achieving improved performance,
while the decentralized cooperative approach performs very
close to an alternative centralized DRL algorithm.

The authors of [121], [122] propose a MAB-based
cooperative caching policy to reduce the download latency
in a multi-cell MEC network. The difference of [122]
to [121] is that, while the user’s preference is unknown,
the historical content demands are available. In contrast
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to other algorithms, assuming knowledge of the content
popularity distribution [123], this work does not depend
on previous knowledge of content popularity and user
preference. A Q-learning algorithm operates on the MEC
servers, which they train with their local caching decisions
and subsequently, they combine the results with the decisions
of other MEC servers. Also, a combinatorial MAB upper
confidence bound method is employed to reduce the overall
complexity. Performance comparisons of the MAB-based
algorithm are conducted against a single-agent RL caching
algorithm, a modified version of LRU and a randomized
replacement caching algorithm. Two different experiments
are performed, focusing first on the cumulative caching
reward and the cumulative number of cache hits over time
and second on the weighted average downloading latency and
the cache hit rate when the storage capacity of each server
varies from 10 to 100 units. Results suggest that the weighted
average download latency can be reduced by 8%, 21% and
24%, respectively, while the cumulative number of cache hits
is higher by 41%, 157% and 246%, respectively.

The joint investigation of cooperative edge caching at BSs
and request routing, towards reducing the content access
delay of the users and improving their QoS is at the epicenter
of [124]. This problem is modeled, as an MDP and DDQN-
based learning is adopted for providing QoS guarantees
and backhaul offloading without statistical knowledge of
the content popularity. As a reward, this scheme considers
the long-term average content fetching delay of the end-
users. Trace-driven simulations suggest that DDQN-based
learning offers a performance gain of 7%, 11% and 9%,
in terms of delay reduction when compared to LRU, LFU and
FIFO caching schemes, respectively. At the same time, the
performance gap against an oracle algorithm, having a priori
knowledge of the users’ preferences and behavior is at 4%.

2) CACHING EFFICIENCY
The authors of [9] formulate a cache hit rate maximization
problem and solve it through AC-based DRL in cooperative
topologies. Performance comparisons against LRU, LFU and
FIFO for different cache sizes reveal that by employing a
centralized critic network, the AC-based DRL learns the
impact of individual decisions on the overall cache hit rate,
striking a balance between the cache hit rate of each agent
and that of the overall system. As a result, the cache hit rate
of the learning-based framework surpasses the performance
of the three policy-based caching schemes.

Then, in [125], SDN and C-RAN architectures are
combined for improved cooperative edge caching. The
BBUs of C-RAN are equipped MEC capabilities, forming
intelligent BBU pools, performing signal processing and
data pre-processing and improving the performance of AI
applications. In order to maximize the cache hit rate and the
cache capacity usage, DRL is employed, considering both
global and local cache information. The proposedQ-learning-
based collaborative cache algorithm (QLCCA) selects among
three different actions, in terms of cache management.

The first action is to cache the most popular data in the
local cache of BBUs. The second action exploits neighboring
BBUs with short transmission delays, coordinated by the
SDN controller and the available data at the global cache,
formed by the caches of multiple BBUs. As a third action,
QLCCA adopts random data caching. A roulette-based policy
is presented to optimize action selection, applying weights
to each one. Performance comparisons, using Matlab˙ shows
improved cache hit rate, as the number of content types
increases, over alternative local and global caching schemes.

Wireless content delivery and replacement are the focus
of [126]. Multi-agent Q-learning is used, modeling the
problem as an MDP, where each small BS is considered as
an agent. The caching policy aims at maximizing the cache
hit rate and combines LFU and LRU policies, achieving better
performance than the standalone versions. In the simulations,
the shot noise model is adopted [127] for determining
the content request pattern over time, generating content
requests with temporal correlation. Results show that under
temporal correlation, the learning-based approach reaches
a hit rate of 79%, compared to 77% and 76% for LFU
and LRU, respectively. Meanwhile, delay performance is
improved and the multi-agent Q-learning guarantees a delay
of 1.1 time-slots, while LFU and LRU provide delays of
1.3 and 1.45 time-slots, respectively. This study is highly
related to [128] which also models content replacement as
an MDP. However, the two works aim at different objectives,
since in [126] the goal is to maximize the cache hit rate while
the objective of [128] is to minimize the system transmission
cost. Moreover, the work in [126] adopts more realistic
simulation parameters and network procedures, as multiple
contents can be simultaneously replaced.

The authors in [129] aim to solve the cooperative content
sharing problem towards reducing the content transmission
cost. A partially observable MDP formulation is adopted
and solved by using multi-agent AC DRL, optimizing the
content fetching cost from the local BS, neighboring BSs and
remote servers. First, a communication module is proposed
to acquire and share the action variability and observations
of the BSs. Then, the statistics of content popularity at
each BS are obtained through a variational recurrent neural
network and subsequently, AC DRL-based cooperative edge
caching is employed, enabling the BSs to cooperate, and
leverage the interdependency on the local and global states of
the distributed decision making of each agent. Performance
evaluation in a multi-cell network reveals that multi-agent
AC DRL improves the caching efficiency compared to multi-
agent AC, DRL and LRU.

3) SPECTRAL EFFICIENCY
In [130], maximum distance separable codes are used for
cooperative coded caching at small BSs in a scenario
with time-varying and unknown content popularity. Aiming
to address this challenge and guarantee reduced fronthaul
load, a multi-agent DRL solution is presented for cache
update. Initially, the dynamic coded caching is modeled,
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as a cooperative multi-agent MDP and due to maximum
distance separable coding, the cache update decision is
characterized as a constrained RL problem with continuous
decision variables. So, DDPG with homotopy optimization
is presented, developing a continuous transformation of the
original problem and exploiting its solution for tackling the
original problem. Simulations show that homotopy DDPG
surpasses the performance of standalone DDPG under differ-
ent network control methods and overall, the decentralized
design outperforms its centralized counterpart.

B. DEVICE-TO-DEVICE NETWORKS
The massive connectivity requirements necessitate com-
munication paradigms, deviating from conventional archi-
tectures. Thus, D2D communication has been proposed,
as a remedy for excessive cellular traffic, enabling users
to directly exchange or relay data for cell edge users.
Decentralized caching at the users devices and intelligent
D2D resource allocation can provide several gains to wireless
networks, minimizing energy consumption, delay and back-
haul usage [131]–[134].

1) ENERGY EFFICIENCY
The authors in [135] focus on improving the caching
efficiency in D2D networks and minimizing the energy
cost by pre-fetching files at user devices and small BSs.
D2D communication offloads part of the cellular traffic,
exploiting the caches of users and their spatial distribution.
Content request behaviour is modeled as an MDP and
RL is applied to discover the file popularity and user
preference distributions. Because of the different capabil-
ities and algorithmic complexities, Q-learning is applied
on users’ devices and DQN on small BSs. Comparisons
against optimal caching with known popularity, random
file caching and no user caching, depict that the proposed
learning-based algorithm closely follows the performance
of optimal caching, in terms of energy consumption and
cache hit rate, independently of the number of files and
user preferences profiles. More specifically, its cache hit rate
is around 85% while the hit rate of the random caching
scheme is 64.5%.

The work in [136] focuses on content placement and
delivery strategies in cache-enabled D2D networks, aiming
at minimizing the content delivery delay and the power
consumption. ESN-based learning is employed for predicting
the content popularity and usermobility patterns, determining
what and where to cache. Then, content delivery is optimized
by relying on a DQN-based algorithm, exploiting CSI and
content transmission delay observations to decide which
actions should be taken. The DQN-based caching strategy
is evaluated in a multi-user network and compared against
Q-learning and random caching. It is observed that due to
the larger action-state space, the reward in the DQN case
is higher than that of Q-learning, while random caching
provides significantly smaller rewards.

2) DELAY REDUCTION
Apart from [136], jointly tackling energy and delay perfor-
mance concerns through two-step learning, i.e., ESN-based
prediction and DQN-based content delivery, there have been
various RL strategies focusing on delay reduction.

Learning-based caching strategies are proposed in [137]
for D2D caching where multi-agent MAB modeling is
adopted. Since the action space is too large, there is no
instantaneous knowledge of the content popularity profile.
More specifically, the users follow a Q-learning approach
where each one learns the Q-values through their own
actions and the actions of the other users. In order to
reduce the action space and the overall complexity, a belief-
based modified combinatorial UCB approach is adopted
for regret minimization, in terms of download latency.
Comparisons include random replacement, LRU and LFU.
More specifically, two scenarios were examined, when the
size of the cache increases and when the number of users
increases. In the first scenario, the gain of the proposed
algorithm in terms of ADL is 13% to 24% and in terms
of cache hit rate, 22% to 194% which also depends on the
number files. In the second scenario, the gain, in terms of
cache hit rate ranges between 35% to 123%.

The paper in [138] focuses on delay reduction with D2D-
aided caching where content popularity and user location
statistics are time-varying. In this setting, a stochastic game
is formulated to derive a cooperative cache placement policy.
Moreover, the user reward to participate in the caching
process is designed as the difference among the caching
incentive and the transmission power cost. Towards solving
this stochastic game, a multi-agent cooperative alternating
Q-learning algorithm is employed, alternatively updating the
user cache placement policy, depending on the stable policy
of other users, until all users obtain a stable cache placement
policy. Simulations show that lower delay is achieved, while
the backhaul load of the cellular network is reduced.

3) SPECTRAL EFFICIENCY
The authors in [139], [140] address D2D mobile edge
caching for increased offloading. A content delivery market
formulation is given and blockchains and smart contracts are
employed. Here, edge caching comprises a content placement
and cache sharing problem, as well as the verification
that the caching actions of the peers are recorded and
handled in a trustworthy manner. In this topology, there
exist different subsystems, performing necessary procedures,
integrated by a cache and blockchain controller. First, the
caching subsystem associates the peer contributions with
their willingness for D2D data sharing. The blockchain
subsystem performs transaction verification at low cost
and latency and ensures system scalability. Both problems
are formulated as an MDP and are addressed by a DQN
algorithm. Performance evaluation compares DQN against
DQL [141], [142] and a greedy scheme, employing each node
to cache the most popular content within its coverage. As
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FIGURE 9. Traffic offloading versus caching resources [140].

shown in Fig. 9, improved offloading is provided by DQN for
increasing caching resources at each user device, highlighting
the importance of D2D communication and the necessity for
incentives to increase user participation.

Mobile social networks are examined in [141]–[143],
focusing on the impact of social relationships. A DRL
approach is presented where each agent receives measure-
ments and observations from its peers. This information is
combined with the wireless channel conditions and the trust
value of every peer is given as input to a DNN which outputs
the proposed actions. Here, the reward is mapped to the
increase of MNO profits through improved backhaul usage
for video content delivery. These reward observations are
also used to train and optimise the neural network. Major
features of these works include the social trust scheme, the
use of Bayesian inference and the Dempster-Shafer theory
for the evaluation of direct and indirect observations [144].
Simulations are presented using TensorFlow, as well as
comparisons with a scheme without indirect observation,
a scheme without edge computing [145] and a scheme
without D2D communications [146]. Also, it is observed
that DRL increases the backhaul usage, benefiting the
MNO profits, independently of the number of content types,
while the total utility performance is better than that of
the other schemes for different numbers of malicious D2D
transmitters.

In D2D-aided information-centric wireless networks, col-
laborative caching at the user devices can result in improved
spectral efficiency and offloading. Thus, the authors in [147]
study resource allocation and power control in a small-cell
MEC networkwith D2D communication. Initially, depending
on whether or not the user cache is not empty, a selection
among cellular or D2D communication is performed. When
D2D communication occurs, channel reuse increases and
an efficient power allocation scheme is devised. A policy-
gradient DRL approach is presented to select the power
levels, using the Gaussian distribution, as well as softmax
channel selection for spectral efficiency maximization and
interference minimization. Comparisons with DQN reveal

improved spectral efficiency and reduced interference, since
policy-gradient DRL selects a power level from a continuous
state space, while DQN selects among discrete values.

4) CACHING EFFICIENCY
The work in [148] identified two challenges that need
to be addressed in D2D networks. First, the need for
caching decisions towards maximizing the probability that
the requested content will be cached in a neighboring node
given the storage constraints and the plethora of the available
content. Second, the level of offloading when multiple
helper nodes are able to cache and deliver the desired
content to another user. To address these issues, a caching
strategy considering parameters, such as the predicted content
popularity, user preferences, user activity level, and social
relationships is proposed. For characterizing the offloading
potential of users, the expected correlation coefficient is
introduced, capturing the offloading probability and the
offloading gain after a D2D content delivery event. At the
same time, D2D pairs by a combinatorial MAB-based online
learning algorithm,. Comparisons with random caching, the
least frequently caching and matching algorithm of [149]
and the collaborative caching and auctionmatching algorithm
of [150] are presented, using real-world traces from the
Unical/SocialBlueconn dataset to model the D2D topology.
Results reveal that the MAB-based algorithm achieves a 53%
offloading ratio, contrary to 45% by collaborative caching
and auction matching, 22% by least frequently caching and
matching and 10% by random caching.

Table 5 summarizes the studies on RL-aided caching
solutions in cooperative networks.

Lessons learned: Compared to non-cooperative multi-
cell networks, data sharing among edge nodes increases
the degrees of freedom when designing RL-aided caching
strategies, leading to improved performance. In cooperative
caching multi-agent learning, edge nodes determine their
caching policies and collaborate with neighboring nodes to
optimize content placement at a system level. A popular
approach is to develop AC-based DRL schemes where the
agents at the edge nodes update the actor network with
their observations and the critic network with the complete
state space through cooperation. Cooperative architectures
can better support distributed edge caching strategies when
determining the cache resource allocation, caching the most
popular content in every edge BS and different partitions of
less popular content at different nodes. Relevant studies have
been shown to improve the cache hit rate performance and
reduce the communication overheads [118].

In D2D edge caching networks, on the one hand, the caches
of the users and their spatial distribution can be used to
improve the caching efficiency. However, user devices are
computationally and energy constrained and simpler learning
algorithms should be used at a local level, while keeping
more complex DRL solutions for infrastructure-based nodes.
Moreover, trust and privacy are major concerns and solutions
include the use of smart contracts and blockchains, verifying
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TABLE 5. List of works focusing on reinforcement learning-aided caching
for cooperative networks.

that the caching actions of the peers are recorded and handled
in a trustworthy manner [139], [140]. Also, an additional
parameter that can be exploited is related to social relation-
ships among users, enabling peers with high trust values to
share their observations, serving as input to RL-aided caching
schemes [141]–[143].

VII. VEHICULAR NETWORKS
RL-aided edge caching in vehicular networks must address
various challenges, related to the dynamicity of the network,
the computing and power resources of vehicles and RSUs,
as well as the vast amount of mobile data. Different scenarios
of vehicular communications, such as V2V or vehicle-to-
infrastructure (V2I), either towards a macro BS or an RSU
are shown in Fig. 10. There, RL agents located at vehicular
and infrastructure-based nodes assume the task of deciding
the caching strategy under specific performance targets. For
example, video content related to in-car entertainment can
be cached at a nearby RSU while road safety and traffic
data might be cached at a nearby vehicle, thus achieving low
latency. The works presented in this section cover various
aspects of vehicular networks, aiming at energy efficiency,
delay reduction and improved caching performance.

FIGURE 10. Various cases of vehicular edge caching relying on RL-aided
nodes.

A. ENERGY EFFICIENCY
The paper in [151] examines the difficulties that edge
servers experience due to the heterogeneity of on-vehicle
applications and the time variability of content popularity.
A learning framework is proposed, allowing cross-layer
offloading and cooperative multi-point caching. In cross-
layer offloading, a computationally heavy task can be
offloaded to the next computation layer, such as RSUs and the
latter can subsequently offload it to BSs. Thus, a DDPG RL-
based resource allocation scheme is proposed, maximizing
the system utility which considers the energy consumption,
and the computation and caching efficiency. Simulations
demonstrate the effectiveness of the proposed scheme and
reveal a trade-off among using edge servers to store the
past experience of user preference for improved prediction
accuracy or using these resources for content caching to
improve system utility.

The study of [152], [153] solves a two-fold problem.
First, establishing a network for secure content caching and
then, ensuring efficient content caching in a volatile network.
To address the first problem, a blockchain enabled distributed
content caching network is proposed, allowing the BSs and
the vehicles to establish a secure peer-to-peer transaction
environment. BSs maintain the permissioned blockchain and
the vehicles perform content caching. To tackle the second
problem, DRL-based content caching is presented, taking
mobility into account while block verification is accelerated.
The reward function considers the total consumed energy for
content transmission and content caching. Also, a security
analysis is conducted, showing that blockchain content
caching provides security and privacy protection with low-
energy consumption. Performance analysis using a real
dataset shows that the proposed algorithm achieves a 86% of
successful content caching requests against 76% of a greedy
algorithm and 5% of a random content caching algorithm.

B. DELAY REDUCTION
The topic of [154] is content delivery delay minimization,
presenting a framework where RSUs collaborate with vehi-
cles to cache popular contents. Multiple communication
scenarios are investigated, such as V2V links, vehicle-to-
RSUs and vehicle-to-macro BSs. In this context, a DDPG
DRL-based solution is employed to solve the content edge
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caching and delivery problem. Comparisons against random
edge caching and delivery, and DDPG without bandwidth
optimization are given. The proposed algorithm demon-
strated significant improvements against the two benchmarks,
in terms of content delivery delay and cumulative total
reward, while exhibiting faster convergence.

The authors of [155] exploit the trilateral collaboration
among vehicles, macro BSs and RSUs for low-latency
communication in vehicular edge networks, optimizing the
content placement and delivery. The problem is modeled as
a double time scale (DTS) MDP, considering that network
changes are more frequent than content changes, in time.
Content placement considers content popularity, vehicle path
and resource availability, as the conditions to optimize in
the large time-scale, while in the small time-scale, vehicle
scheduling and bandwidth allocation are performed for
content delivery latency minimization. So, a DDPG frame-
work is adopted for obtaining a sub-optimal solution with
low computational complexity. Performance evaluation is
presented, taking into account content delivery latency, cache
hit rate and system cost where substantial improvements
against random caching and non-cooperative caching (e.g.
135.62% and 34.33% hit rate increase, respectively) are
shown.

The authors of [156] elaborate on vehicular edge com-
puting, using RSUs for computation offloading. The lim-
ited spectral resources to support the communication and
computation offloading in edge computing and autonomous
driving pose significant challenges. So, a unified model for
data scheduling is developed, allowing V2V and vehicle-to-
RSU communication and collaborative computing. Targeting
to improve the data processing performance, a penalty
mechanism is introduced, activated when the data processing
deadline is not satisfied. For this purpose, a DQN algorithm
is developed to derive the collaborative data scheduling strat-
egy, minimizing the data processing cost without increasing
the delay. Comparisons with a DQN benchmark without
a separate target Q-network shows that the latter’s reward
performance requires additional episodes and exhibits higher
fluctuation. Regarding the average reward of long-term data
scheduling, DQNwith separate target Q-network is compared
with benchmarks, employing only vehicular, RSU or non-
collaborative data offloading, demonstrating processing cost
reduction and delay guarantees.

C. SPECTRAL EFFICIENCY
The paper in [157] focuses on content caching, computing
and networking in vehicular networks. A DRL algorithm,
using DQN for Q-value approximation is presented, orches-
trating networking, caching and computing resources to
meet the requirements of different applications. The reward
function considers the MVNO revenue, consisting of the
received SNR of the wireless access link, the task compu-
tation capability and the cache state. Comparisons of the
DRL solution against benchmarks without virtualization,

MEC offloading and mobile edge caching in a static setting,
emphasize its superiority for increasing the MVNO revenue.

Another scheme focusing on maximizing the MVNO
revenue is presented in [158], proposing dynamic resource
allocation in vehicular networks. Reward consists of the
MVNO revenue, which is modeled as a function of the
received SNR, the computation capability and the access link
state. By relying on SDN and information-centric network-
ing, dynamic orchestration of computing and communica-
tion resources for virtual wireless network optimization is
targeted. The authors model the resource allocation strategy
as an MDP, using VFA. The high complexity of the problem
is tackled using A3C-based RL and simulations demonstrate
increased reward and high convergence speed, resulting
in improved MVNO revenue compared to a policy-based
scheme.

The authors of [159] take advantage of DRL to orchestrate
edge computing and resource allocation with the goal of
maximizing the MNO revenue without degrading the QoE
in V2V networks. More specifically, they design a DDPG
model to optimize resource allocation and task assignment
in a volatile vehicular environment with mobile edge caching
servers. They conduct experiments based on real traffic data
and they compare the DDPG-based solution against a non-
cooperative scheme, a computation offloading scheme and
an edge caching scheme without computation offloading.
Results indicate that the MNO profits can be significantly
larger when the proposed scheme is adopted, compared to the
other benchmarks.

In [40] the goal is the maximization of a reward function
comprising communication, computation and data offloading
metrics, while satisfying a deadline-constrained service.
In this network, both vehicles and RSUs have caching and
computing capabilities. They collaborate and communicate
via V2V andV2I communication to improve the cache hit rate
by retrieving content via nearby vehicles or RSUs. Moreover,
vehicles are able to offload tasks to neighboring vehicles,
RSUs and BSs. A Q-learning algorithm with multi-timescale
network is proposed for the caching placement, computing
resource allocation and assessment of the sets of possible
connecting RSUs and vehicles. Optimal configuration of
the Q-learning algorithm is performed, validating their
theoretical findings and achieving significant cost gains
against a random resource allocation scheme and a scheme
where caching and computing capabilities are limited to
RSUs.

A similar topic with [40] is studied in [160], formulating
a joint caching and computing allocation problem for cost
minimization under the constraints of dynamic RSU stor-
age capacities. Multi-time scale algorithms are developed,
dictating caching placement, computing resource allocation
and assessment of the sets of potentially connected RSUs,
contrary to connecting RSUs and vehicles, as in [40].
The developed algorithms are based on particle swarm
optimization and DQL for large and small timescale models,
respectively. Numerical results show significant performance

VOLUME 10, 2022 4403



N. Nomikos et al.: Survey on Reinforcement Learning-Aided Caching in Heterogeneous Mobile Edge Networks

gains while using optimal parameter configurations for the
proposed algorithms.

In a scenario with cache capacity constraints, the authors
in [161] target at data rate maximization and present a
cooperative caching strategy in a vehicular network. Their
approach relies on the Hawkes process to adapt to the
variability of content popularity. The Hawkes process models
a sequence of arrivals over time, with each one increasing
the chance of a subsequent arrival for some time after the
first arrival. Also, DRL is employed for determining the
cooperative content caching decision where the reward is
mapped to the data rate that is achieved. They compare their
approach with policy-based LFU and a static caching scheme
and show that the DRL-based strategy significantly improves
the throughput performance.

D. CACHING EFFICIENCY
In the context of the Internet of Vehicles, edge caching can
play a major role towards improving the content request
process and reducing the backhaul load of fixed BSs.
As content popularity is time-varying, the work in [162]
aim at improving the cache hit rate in a vehicular setting
through a cooperative caching strategy with content request
prediction. For this purpose, a three-step process is proposed
inwhich initially, K-means is employed to cluster the vehicles
and facilitate content request and dissemination. Content
request prediction is performed through LSTM, leveraging
the historical content request data. In the third step, RL is used
to determine the optimal caching decision which maximizes
the cache hit rate. However, they have not focused in detail on
the mobility of vehicles on the caching decision. Performance
comparisons show that the three-step solution surpasses the
content acquisition delay performance of LFU and LRU
by 8% to 10%, respectively for different content popularity
Zipf parameter values. Also, it achieves a cache hit rate
improvement of 5% and 7% over LFU and LRU, respectively
when the Zipf parameter is set to 0.7.

The integration of RL with multi-level FL is presented
in [163]. Since most caching policies incur high overheads
while trying to adapt to the dynamicity of content popularity
and vehicular networking, a cooperative caching solution
with multi-level federated RL is proposed, determining
the cache update policy and content request service. The
authors perform a two level aggregation to speed up the
convergence rate, a low-level aggregation at the RSUs and
a high-level aggregation at a global aggregator. The low-level
aggregation is based on a DLR model which is trained by on-
board units and provides feedback to the RSUs. High level-
aggregation aims towards federated training and improves
convergence. The proposed algorithm is compared against
LRU, LFU and FIFO and a baseline FL DRL algorithm.
The proposed algorithm has improved hit rate (10% to
15% improvement) and latency performance (24% to 28%
improvement) over LRU, LFU. Moreover it converges faster
than the FL algorithm without two level aggregation for
different cache capacities and content volume.

Table 6 includes relevant studies on RL-aided caching
solutions in vehicular networks and the performance goal
they pursue.

TABLE 6. List of works focusing on reinforcement learning-aided caching
for vehicular networks.

Lessons learned: Resource-demanding applications with
stringent latency and reliability requirements, such as in-car
entertainment, autonomous driving and live traffic monitor-
ing pose significant difficulties to communication networks.
Vehicular communication, edge caching and computation
offloading from connected and automated vehicles provide
important tools for satisfying such services. However, the
highly dynamic vehicular environment makes the resource
allocation a non-convex optimization problem with com-
plicated objective function and constraints. Towards this
end, most works develop RL-based solutions with joint
communication and computation resource allocation for
data and task offloading. RL has shown its potential in
abstracting the parameters of vehicular networks, providing
optimal resource allocation strategies, outperforming non-
collaborative and policy-based approaches. Still, security and
trust are major issues in vehicular applications and initial
studies have shown that employing infrastructure-based
nodes, such as BSs to maintain permissioned blockchains
can provide secure V2V edge caching with privacy preser-
vation [152], [153]. Furthermore, improved mobility pre-
diction schemes are required in order to perform proactive
content recommendation and caching at edge nodes, pro-
cesses which can be more easily implemented in intelligent
transportation systems with predetermined trajectories. In
this context, hybrid learning paradigms where historical
mobility data can be leveraged by a supervised learning
algorithm in conjunction to online RL have not been
developed.
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VIII. UAV-AIDED NETWORKS
UAVs will play a vital role in 6G wireless networks.
UAV-aided networks enable flexible network deployment,
allocating resource where and when needed, as well as
fast recovery after disasters and network outages. However,
their dynamicity poses challenges to wireless networks,
as the mobility of the aerial APs affects user association,
interference levels and caching decisions. In this context,
RL is expected to provide solutions for efficient edge caching
by deployingUAVs at optimal locations and determining their
trajectory and communication parameters.

A. DELAY REDUCTION
Focusing on cache-enabled UAVs, the paper in [164] exam-
ined proactive caching for reduced latency and backhaul load.
Multi-objective optimization determines the minimum num-
ber of deployed UAVs, transmit power, UAV-user association,
and cache location. In order to solve the multi-objective
optimization, RL is adopted for user grouping, performing
local search according to the optimal UAV deployment over
each group. From the results, the efficiency of the RLmethod
is shown, effectively minimizing the number of required
UAVs, compared to the case without caching, as well as their
3-D placement in the network, resulting in improved cache
placement and lower delay.

In cache-enabled UAV-aided NOMA networks, the authors
in [165] turn to RL for leveraging the dynamic UAV
mobility and content request variations. Initially, long-term
optimization of cache placement, user scheduling andNOMA
power allocation is formulated, minimizing the sum delay of
ground users. Then, the optimization problem is converted
into an MDP and Q-learning reaches to a near-optimal
solution. Nonetheless, in large-scale networks, Q-learning
fails to cope with the large MDP state and action spaces
and VFA-based caching and resource allocation is proposed.
Performance evaluation in a multi-cell environment focuses
on a single cache- and UAV-aided cell. Content delivery delay
and cache hit ratio comparisons include the two RL solutions,
a greedy algorithm obtaining the optimal delivery delay
of the current state, a fixed algorithm caching the popular
contents of previous states, employing round robin-based
scheduling and fixed power allocation and finally, random
content caching and resource allocation. It is concluded
that in small-scale networks, Q-learning provides a small
performance gap compared to the greedy algorithm, while
in large-scale networks, function approximation outperforms
both random and fixed algorithms.

A UAV-aided small cell topology, providing virtual real-
ity (VR) services with stringent delay constraints is studied
in [166]. UAVs alleviate the burden of backhaul and access
links by collecting the desired contents, transmitting them
to the cache-aided small BSs, communicating with the
VR users. The joint optimization of caching and transmis-
sion is solved by developing a DL algorithm, relying on
LSM neural networks and ESNs, namely echo liquid state

machine (ELSM) DRL. ELSM DRL identifies the relation-
ship among actions, selection policy of small BSs and user
reliability. Compared to conventional DRL, ELSM-based
DRL offers increased prediction accuracy, using historical
data while ESNs reduce the training complexity by adjusting
only its output weight matrix and avoiding the calculation of
the gradients of all the neurons. Comparisons include ELSM,
LSM, Q-learning [167] and ESN-based learning [168]. It is
shown that ELSM provides a 10% and 18.4% reliability
improvement against ESN and Q-learning when 35 users
exist in the network. In addition, ELSM converges 11.8%
faster, compared to LSM in a network with 11 small BSs.

An LTE cloud network operating in licensed and unli-
censed bands is the studied in [169], focusing on resource
allocation for cache-enabled UAVs. The performance target
here is to maintain queue stability, directly affecting the
content transmission delay in the network. Constrained by the
limited capacity of the UAV-cloud links, LSM is employed
to help the UAVs perform content caching and resource
management. LSM enables the cloud to efficiently learn user-
centric information regarding content request distribution and
to facilitate spectrum allocation by the UAVs. This method
is extended in [170], where an optimization problem is
formulated to maximize the number of users with stable
queues. As a solution to this problem, a self-organized and
decentralized algorithm is developed and LSM is employed
for joint caching and resource allocation over both licensed
and unlicensed bands. Performance evaluation reveals that
LSM increases the number of users with stable queues in
comparison to Q-learning with and without content caching.

B. ENERGY EFFICIENCY
Improved UAV-aided network operation in the Internet
of Vehicles is the topic of [171]. Due to the increased
mobility and dynamic content requests, content delivery
becomes challenging. More specifically, vehicles request
contents from the UAV in the downlink while the latter has
to decide which popular contents should be cached from
arriving vehicles in the uplink. As a performance metric,
the maximization of the number of served vehicles over
the UAV energy consumption is investigated and the joint
problem of caching, UAV trajectory and resource allocation is
tackled. However, randomly arriving vehicles make the use of
traditional optimization prohibitive. Thus, after formulating
the joint problem as an MDP, PPO-based DRL is employed
to control UAV trajectory. Learning relies on rewarding the
agent when a vehicle is served by the UAV, and penalizing the
agent, according to the energy consumption incurred by UAV
movement. Simulations consider a single cache-aided UAV
cell and PPO is compared against stationary UAV, random
UAVmobility, maximum speed selection formoving theUAV
back-and-forth over the highway, as well as minimum energy
UAV selection. It is revealed that PPO-based DRL balances
the amount of traffic offloading and the energy consumption
at the UAV, better adapting to content requests for different
content popularity values.
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Another RL-based solution for improved energy efficiency
in cache-enabled UAV-aided networks is presented in [172].
Focusing on an urban scenario with mobile users, the
storage and energy capabilities of the UAV are considered,
towards maximizing the sum achievable throughput. Since
this problem is shown to be non-convex, DRL is adopted
for joint content placement and trajectory design. More
specifically, energy-efficient UAV control is achieved by
employing a DDQN for online trajectory design, according
to real-time user mobility and avoiding the over-estimation
of the value function of traditional DQN. Also, during
the offline content placement stage, a link-based caching
strategy is developed for cache hit rate maximization through
approximation and convex optimization, leading to a trade-
off among file popularity and diversity. In order to illustrate
the performance of caching and DDQN trajectory design,
a multi-cell simulation environment using TensorFlow is
developed, showing that the selection of appropriate hyperpa-
rameters, such as learning rate can increase the performance
of DDQN. As a result, throughput and energy consumption
gains are harvested over static circular trajectory designs
where mobile users are not optimally served.

TABLE 7. List of works focusing on reinforcement learning-aided caching
for UAV-aided networks.

Table 7 lists RL-aided caching solutions in UAV networks
and the corresponding performance targets.

Lessons learned: The introduction of aerial nodes in 6G
networks provides tremendous opportunities to edge caching
applications, as UAVs can be dynamically deployed closer
to the end users, improving communication and facilitating
data offloading by proactive caching. However, in order to
harvest the highest possible gains from UAV-aided operation,
the complexity of multi-objective optimization, considering
the communication parameters, caching location, trajectory
design and the energy-constraints might be prohibitive. As a
remedy, RL methods provide an alternative approach to
achieve near-optimal operation, as long as the issue of large
action and state space is addressed, e.g. through VFA [165].
Other works have developed joint content placement and
trajectory design solutions [171], [172] through DRL with
promising performance. However, currently, hybrid learning-
based solutions, combining offline training using historical
data and online RL-aided operation for faster convergence

and UAV deployment are missing. Another gap that has been
observed is RL-aided decentralized caching in settings where
UAV swarms are deployed and a large number of caches is
available. Finally, caching strategies based on the popular
AC and MAB frameworks have not been considered in UAV-
aided networks.

IX. OPEN ISSUES
A. PHYSICAL-LAYER ASPECTS
In this survey, the function of caching has been studied
from the aspect of content placement for improving various
network objectives. However, the function of caching, in the
context of buffer-aided networks is related to the optimization
of physical-layer characteristics, such as diversity through
appropriate transmission/reception scheduling with increased
degrees of freedom. Buffer-aided relaying has shown tremen-
dous gains in different communication scenarios, increasing
the transmission reliability and mitigating interference and
fading [173]–[176]. For example, buffer-aided full-duplex
(FD) relays can increase the flexibility of edge caching
operation, establishing end-to-end communication of users
with a BS, caching their desired content. However, at another
instance, the relay, having already cached this content, can
deliver it under more favorable channel conditions. Thus,
the development of RL-aided solutions integrating high
diversity data buffering techniques, considering edge caching
parameters, such as content location represents an attractive
research direction.

In addition, RL has been proposed as an alternative
approach to conventional optimization when the derivation
of optimal communication parameters entails excessive com-
plexity and high network coordination overheads. In mobile
edge networks where different cells might overlap, the design
of RL-aided caching policies should not neglect physical-
layer issues. These include intra- and inter-cell interference,
fast fading due to mobility from receivers and transmitters,
and path-loss. RL solutions should evaluate data related to
signal-to-interference plus noise ratio and jointly determine
the edge caching locations, BS and user association, D2D
cooperation, duplexing method, modulation order, coding
rate, beamforming vectors and transmit power level. MAB-
based RL-aided solutions have already shown promis-
ing performance in such physical-layer-related problems
[177]–[182]. Also, in many cases, edge networks comprise
energy-constrained nodes with limited capabilities, such
as IoT devices and the integration of wireless powered
communications with RL-aided edge caching and computing
should be studied [183].

B. NON-ORTHOGONAL MULTIPLE-ACCESS
Edge caching has the potential to improve the performance
ofmobile networks, resulting in homogeneousQoS and better
backhaul/fronthaul offloading. However, the massive number
of users and devices in 6G networks calls for NOMA strate-
gies in order to better exploit the wireless resources. Recently,
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the integration of NOMA in mobile edge networks has been
proposed, jointly determining the task allocation, caching
location and power allocation for NOMA [184]–[186]. At the
same time, the benefits of NOMA in buffer-aided networks
have already been shown in various works and tailor-made
caching policies when users are simultaneously served on
the same physical resources should be devised [187]–[190].
Still, considering the large amount of network parameters,
including storage, power level, spectrum andQoS constraints,
conventional optimization will often fail in deriving optimal
caching policies when NOMA is employed.

C. SEMANTIC-AWARE CACHING
Traditionally, each new generation of wireless networks has
been designed from an information theoretic perspective
towards data rate maximization and QoS provisioning.
As the research on 6G communication intensifies, a dif-
ferent wireless networking design principle has recently
been introduced, related to the semantic aspect of data.
Semantic communication radically departs from the Shannon
paradigm which only focuses on correct data reception
by considering the impact that correct reception has on a
pre-defined goal [191]. In [192], a model for semantic-
empowered and goal-oriented networking has been proposed
where transmitted data conveys to the end-user information
that is characterized by timeliness, usefulness and value.
Moreover, the survey in [193] has discussed the importance
of the semantic aspect for communication among humans
and machines, such as VR/AR services where data caching
at edge servers provides significant offloading and latency
minimization [191]. In the context of semantic-aware edge
caching, content, as well as knowledge base systems and
virtual machines should be moved in proximity to end-users.
So, future efforts should focus on proactive virtual machine
caching, offering computation and caching gains to industrial
IoT and other critical services.

D. RADICAL LEARNING PARADIGMS
RL operation for improving the performance of edge net-
works with a massive number of users and IoT devices
should aim at avoiding complex and resource-demanding
learning solutionswhile still exploiting the large geographical
distribution and heterogeneity of edge nodes. In this context,
the incorporation of transfer and federated learning in RL-
aided edge networks represents a fertile research area with
only a limited number of contributions [81], [105], [120].
First, transfer learning is based on initially extracting features,
such as file popularity on a base network with a generalized
dataset. Then, these features are used to facilitate DRL agents
at the edge to converge to the optimal edge caching policy,
thus minimizing the energy consumption at the edge devices.
On the other hand, FL leverages the observations of multiple
DRL agents at different edge nodes and trains a sharedmodel.
In addition, communication costs among edge nodes are
reduced, since FL uses locally stored data, only calculating
updates to the global shared model of the coordinating node.

E. SECURITY, PRIVACY AND TRUST
Mobile edge networks comprise operator-owned clouds,
infrastructure-based BSs and machines, as well as user
devices. Caching, apart from rate and delay improvements,
has the potential to improve security in such heterogeneous
wireless networks, e.g., physical-layer security (PLS) [194].
While the problem has been studied extensively in different
context, ranging from cellular [195] to cooperative net-
works [196], cooperative and low-complexity RL solutions
can be implemented on a wide range of network nodes
to facilitate and enhance PLS, especially when trade-offs
among latency and security arise [197]. At the same time,
issues of trust are raised, especially in infrastructure-less
D2D-aided edge scenarios where social-awareness can be
exploited [141]–[143]. RL algorithms should take into
consideration the behaviour of cooperating nodes and incur
penalties when malicious behavior is observed, since caching
at small BSs and more importantly, at user devices can
threaten user data privacy. Furthermore, in decentralized
learning paradigms, such as federated learning which better
suit privacy sensitive applications, it is necessary to ensure
that shared models will be based on information exchange
among trustworthy peers. In this area, recent works have
adopted blockchains and smart contracts, highlighting their
efficiency in M2M, D2D and V2V RL-aided edge caching
but still, further advancements are needed [69], [139], [140],
[152], [153]. In addition, further adoption of FL can alleviate
privacy concerns, as for example in F-RANs where data
from IoT devices are collected and at central servers for
content popularity prediction. In this case, FL-based solutions
maintain data locally and IoT devices train a shared learning
model for content popularity prediction purposes [198].
Finally, in the context of semantic-aware learning-based
cache update and content delivery strategies, issues of data
privacy and trust may arise, and building upon the FL
frameworks can address such concerns, as proposed in [199].

F. COOPERATIVE CACHING EXTENSIONS
Cooperative caching is examined from various perspectives
and various open issues are noted. In [112], edge nodes learn
their best caching policies using a multi-agent AC DLR.
However, accuracy, scalability and efficiency in HetNets
can be further improved through real-time heuristics and
analytics. In a different topology, the solution in [116]
offloads tasks to edge computing nodes, investigating the
management strategy of the compute and cache resources.
In this area, further research on the use of competitive
bidding and allocation priorities can enable additional gains.
In [9], BSs compete for wireless access and also cooperate
towards reducing the average delay. The main target is to
jointly perform content caching problem along with power
control and user scheduling. Recently, cooperation among
space and terrestrial segments has led to the formation of
integrated satellite-terrestrial networks. Currently, only few
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studies investigate the potential of satellites to push content
to cache-aided BSs, alleviating the backhaul [200].

G. VOLATILE NETWORKING TOPOLOGIES
Vehicular and UAV-aided networks represent interesting
domains of edge caching where BSs, RSUs, ground and
aerial vehicles collaborate for the optimal management of
caching and computation resources in a highly volatile
environment. Further research can be performed regarding
security, resourcemanagement andmobility prediction.More
specifically, the authors of [151] take into account RSUs to
provide computation offloading and spectrum planning to
investigate AI algorithms for efficient handover. Proactive
caching and pre-allocation of network bandwidth is also
the future focus of [159]. Also, the caching and computing
resources orchestration for different application types, aiming
at increased energy efficiency in highly mobile networks
provides another interesting future direction [157].

X. CONCLUSION
Edge caching represents a major shift in network architecture
design, since content is brought closer to the users in an
intelligent and proactive manner. In this way, the burden
in backhaul and fronthaul is relieved and repeated requests
to remote web servers are avoided. Still, the optimization
of edge caching performance must take into consideration
several characteristics, including mobility, resource alloca-
tion, energy and storage capabilities, as well as requirements,
including rate and delay. In this context, the adoption of
reinforcement learning can lead to tangible performance
gains at an acceptable complexity, overcoming the limi-
tations of traditional approaches. This survey focused on
reinforcement-aided edge caching in a variety of network set-
tings, comprising fixed access points, fog-enabled paradigms,
cooperative schemes, as well as aerial and ground vehicles.
The discussion of the different learning solutions revealed
that the fusion of learning and edge caching can result
in significant benefits, independently of the complexity
of the wireless environment and surpass the performance
of conventional optimization solutions, while guaranteeing
service requirements in an online and autonomous fashion.
Finally, several open issues in the field have been highlighted,
representing important future research directions and paving
the way for further innovations towards realizing the 6G
communications vision.
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