
ViP2P: Efficient XML Management in DHT
Networks

Konstantinos Karanasos1, Asterios Katsifodimos1,
Ioana Manolescu1, and Spyros Zoupanos2

1 Inria Saclay–Île de France and LRI, Université Paris Sud-11
2 Max-Planck Institut für Informatik, Saarbrücken, Germany

fistname.lastname@inria.fr

Abstract. We consider the problem of efficiently sharing large volumes
of XML data based on distributed hash table overlay networks. Over
the last three years, we have built ViP2P (standing for Views in Peer-
to-Peer), a platform for the distributed, parallel dissemination of XML
data among peers. At the core of ViP2P stand distributed materialized
XML views, defined as XML queries, filled in with data published any-
where in the network, and exploited to efficiently answer queries issued
by any network peer. ViP2P is one of the very few fully implemented P2P
platforms for XML sharing, deployed on hundreds of peers in a WAN.
This paper describes the system architecture and modules, and the engi-
neering lessons learned. We show experimental results, showing that our
choices, outperf related systems by orders of magnitude in terms of data
volumes, network size and data dissemination throughput.

Keywords: P2P, XML, DHT, distributed views

1 Introduction

We consider the large-scale management of distributed XML data in a peer-to-
peer (P2P) setting. To provide users with precise and complete answers to their
requests for information, we assume that the requests are formulated by means of
a structured query language, and that the system must return complete results.
That is, if somewhere in the distributed peer network, an answer to a given query
exists, the system will find it and include it in the query result. Thus, we consider
P2P XML data management based on a structured peer-to-peer network, more
specifically, a distributed hash table (or DHT, in short).

In this setting, users may formulate two kinds of information requests. First,
they may want to subscribe to interesting data anywhere in the network, that
were published before or after the subscription is recorded in the system. We
need to ensure that results are eventually returned as soon as possible, following
the publication of a matching data source. Second, users may formulate ad-hoc
(snapshot) queries, by which they just seek to obtain as fast as possible the
results which have already been published in the network.

The challenges raised by a DHT-based XML data management platform are:
(i) building a distributed resource catalog, enabling data producers and con-
sumers to “meet” in an information sharing space; such a catalog is needed both

ha
l-0

06
92

82
7,

 v
er

si
on

 1
 -

1
M

ay
 2

01
2

Author manuscript, published in "ICWE - 12th International Conference on Web Engineering (2012)"

http://hal.inria.fr/hal-00692827
http://hal.archives-ouvertes.fr

2 K. Karanasos, A. Katsifodimos, I. Manolescu, S. Zoupanos

for subscription and ad-hoc queries; (ii) efficiently distributing the data of the
network to consumers that have subscribed to it, and; (iii) providing efficient
distributed query evaluation algorithms for answering ad-hoc queries fast.

Over the last three years, we have invested more than 6 man-years build-
ing the ViP2P3 platform to address these challenges. Importantly, ViP2P uses
subscriptions as views: results of long-running subscription queries are stored by
the subscriber peers and re-used to answer subsequent ad-hoc queries.

A critical engineering issue when deploying XML data management applica-
tions on a DHT is the division of tasks between the DHT and the upper layers. In
ViP2P, we chose to load the DHT layer as little as possible, and keep the heavy-
weight query processing operations in the data management layer and outside
the DHT. This has enabled us to build and efficiently deploy an important-size
system (70.000 lines of Java code), which we show scales on up to 250 computers
in a WAN, and hundreds of GBs of XML data.

Several DHT-based XML data management platforms [3,9,11] are only con-
cerned with locating in the P2P networks the documents relevant for a query.
All the peers which may hold results then locally evaluate the query, leading to
high query traffic and peer overload. In contrast, as in [1,2,6,8], ViP2P answers
queries over a global XML database distributed in a P2P network.

In this paper, we make the following contributions. (i) We present a scalable,
end-to-end architecture of one of the very few DHT-based XML sharing plat-
forms actually implemented. From a system engineering perspective, we believe
this is a useful addition to the corpus of existing DHT-based XML data man-
agement literature which has focused more on indexing and filtering algorithms,
and less on system aspects. (ii) We present an experimental study of XML dis-
semination to DHT-based subscriptions, show which network parameters impact
its performance, and demonstrate that ViP2P outperforms competitor systems
by orders of magnitude in terms of published data volumes and throughput.

In the sequel, Section 2 presents an overview of the platform and Section 3 the
architecture of a ViP2P peer. Section 4 experimentally demonstrate the platform
scalability; many more experiments can be found in [4]. We then conclude.

2 Platform Overview
XML data flows in ViP2P can be summarized as follows. XML documents are
published independently and autonomously by any peer. Peers can also formu-
late subscriptions, or long-running queries, potentially matching documents pub-
lished before, or after the subscriptions. The results of each subscription query
are stored at the peer defining the subscription, and the definition of it is indexed
in the peer network. Finally, peers can ask ad-hoc queries, which are answered
in a snapshot fashion (based on the data available in the network so far) by
exploiting the existing subscriptions, which can be seen as materialized views.
In this Section, we detail the overall process via an example.

A sample ViP2P instance over six peers is depicted in Figure 1 (left). In the
Figure, XML documents are denoted by triangles, whereas views are denoted by
tables, hinting to the fact that they contain sets of tuples.

3 http://vip2p.saclay.inria.fr

ha
l-0

06
92

82
7,

 v
er

si
on

 1
 -

1
M

ay
 2

01
2

ViP2P: Efficient XML Management in DHT Networks 3

ViP2P Core

Resource Catalog

Query
management

View
management

View
indexing

View
materialization

Document
management

View
lookup

View data
extraction

View
lookup

Query
execution

Query
rewriting
Query

optimization

Da
ta

 E
x c

ha
ng

e

Data Storage

Fig. 1. System overview (left); Architecture of a ViP2P peer (right).

For ease of explanation, we make the following naming conventions for the
remainder of this paper: publisher is a peer which publishes an XML document,
consumer is a peer which defines a subscription and stores its results (or, equiva-
lently, the respective materialized view) and query peer is a peer which poses an
ad-hoc query. Clearly, a peer can play any subset of these roles simultaneously.

View publication A ViP2P view is a long-running subscription query that any
peer can freely define. In the sequel, we will refer to long-running subscription
queries as materialized views or just views. The definition (i.e., the actual query)
of each newly created view is indexed in the DHT network. For instance, assume
peer p2 in Figure 1 (left) publishes the view v1, defined by the XPath query
//bibliography//book[contains(.,′ Databases′)]. The view requires all the books
items from a bibliography containing the word ‘Databases’. ViP2P indexes v1 by
inserting in the DHT the following three (key, value) pairs: (bibliography, v1@p2),
(book, v1@p2) and (′Databases′, v1@p2). Here, v1@p2 encapsulates the structured
query defining v1, and a pointer to the concrete database at peer p2 where v1
data is stored. As will be shown below, all existing and future documents that
can affect v1, push the corresponding data to its database.

Peers look up views in the DHT in two situations: when publishing docu-
ments, and when issuing ad-hoc queries. We detail this below.

Document publication When publishing a document, each peer is in charge
of identifying the views within the whole network to which its document may
contribute. For instance, in Figure 1 left (step a), peer p3 publishes the document
d2. Peer p3 extracts from d2 all distinct element names and all keywords. For each
such element name or keyword k, p3 looks up in the DHT for view definitions
associated to k. Assume that document d2 contains data matching the view
v1 as it contains the element names bibliography and book, as well as the word
′Databases′, thus p3, learns about the existence of v1 (step b). In the publication
example above, p3 extracts from d2 the results matching v1; from now on, we
will use the notation v1(d2) to designate such results. Peer p3 sends v1(d2) to p2
(step c), which adds them to the database storing v1 data.

Ad-hoc query answering ViP2P peers may pose ad-hoc queries, which must
be evaluated immediately. To evaluate such queries, a ViP2P peer looks up in the
network for views which may be used to answer it. For instance, assume the query
q = //bibliography//book[contains(., ′Databases′)]//author is issued at peer p5

ha
l-0

06
92

82
7,

 v
er

si
on

 1
 -

1
M

ay
 2

01
2

4 K. Karanasos, A. Katsifodimos, I. Manolescu, S. Zoupanos

(step 1, in Figure 1, left). To process q, p5 looks up the keys bibliography, book,
′Databases′ and author in the DHT, and retrieves a set of view definitions, v1, v2
and v3 (step 2). Observe that q can be rewritten as v1//author; therefore, p5 can
answer q just by retrieving and extracting q’s results out of v1. Alternatively,
assume that q can also be rewritten by joining views v2 and v3 as ViP2P can
combine several views to rewrite a query [4]. In that case, p5 can retrieve the
views v2 and v3 (step 3) and join them to evaluate q. However, the whole content
of both views has to be shipped to p5 to evaluate the query q. Instead, v2 can
be shipped to peer p1, joined locally with v3 at p1 (step 4), who will send the
query results to the query peer (step 4’), avoiding extraneous data transfers.

3 ViP2P Peer Architecture

Figure 1 (right) outlines the architecture of a ViP2P peer. In this Section, we
introduce the auxiliary modules on which every peer relies, and then move to
the main modules, which are included in the ViP2P Core box of Figure 1.

Resource catalog provides the underlying DHT layer used to keep peers con-
nected, and to index and lookup views. It employs the FreePastry DHT, which
is an open-source implementation of the Pastry overlay network [10]. It provides
efficient request routing, deterministic object location, and load balancing.

Data exchange module is responsible for all data transfers and relies on Java
RMI. Experience with FreePastry has shown that Pastry-routed inter-peer com-
munications quickly become the bottleneck when sending important volumes of
data [1]. Instead, we use RMI (with our own (de)serialization methods, prop-
erly controlling concurrency at the sender and receiver side etc.) to send larger
messages containing view tuples, when views are materialized and queried.

Data storage Within each peer, view tuples are efficiently stored into a native
store that we built using the BerkeleyDB4 library. It allows storing, retrieving
and sorting entries, with transactional guarantees for concurrent operations.

The VIP2P GUI enables publishing views, documents and evaluating queries.

We now describe the core modules.

Document management determines to which views the peer’s documents may
contribute data, and extracts and sends this data to the appropriate consumers.

- View definition lookup When a new document is published by a peer, this
module looks up in the DHT for view definitions to which the document may
contribute data. The result is a superset of view definitions of the views that
the document might contribute data to. These definitions are then passed to the
view data extraction module.

- View data extraction Given a list of view definitions, this module at a pub-
lisher peer extracts from the document the tuples matching each view, and ships
them, in a parallel fashion, to the corresponding consumers. The view data ex-
tractor is capable of simultaneously matching several views on a given document,
thus extracting the corresponding tuples at a single document traversal.

4 http://www.oracle.com/technetwork/database/berkeleydb/

ha
l-0

06
92

82
7,

 v
er

si
on

 1
 -

1
M

ay
 2

01
2

ViP2P: Efficient XML Management in DHT Networks 5

View management This module handles view indexing and materialization.

- View indexing This module implements the view indexing process. In this
context, a given algorithm for extracting (key, value) pairs out of a view definition
is termed a view indexing strategy [4]. In our experiments, the most efficient is
the Label Indexing (LI) strategy, indexing a view v by each v node label (element
or attribute name, or word).

- View materialization The view materialization module receives tuples from
remote publishers and stores them in the respective BerkeleyDB database. In a
large scale, real-world scenario, thousands of documents might be contributing
data to a single view. To avoid overload on its incoming data transfers, this
module implements a back-pressure tuple-send/receive protocol which informs
the publisher when the consumer is overloaded, so that the publisher waits until
the consumer is ready to accept new tuples.

Query management comprises the following modules for query evaluation.

- View lookup This module, given a query, performs a lookup in the DHT
network retrieving the view definitions that may be used to rewrite the query.
Depending on the indexing strategy (mentioned earlier in this Section), this
module uses a different view lookup method.

- Query rewriting Given a query and a set of view definitions, this module
produces a logical plan which, evaluated on some views, produces exactly the
results required by the query (algorithm detailed in [7]).

- Query optimization This module receives a logical plan that is output by the
query rewriting module, and translates it to an optimized physical plan. The op-
timization concerns both the logical (join reordering, push selections/projections
etc.) and physical (dictating the exact flow of data during query execution) level.

- Query execution This module provides a set of physical operators which
can be executed by any ViP2P peer, implementing the standard iterator-based
execution model. Since ViP2P is a distributed application, operators can be
deployed to peers and executed in a distributed manner. The query optimization
module is the one to decide the parts of a physical plan that every peer executes.

4 Experimental Results

We now present a set of experiments studying ViP2P performance, carried on
the Grid5000 infrastructure5. Due to space limitations, we only report here on
our main findings; many more experiments are described in [4].

In our experiments, we used synthetic “product catalog” documents of con-
trollable size (more details can be found in [4]). First, all views are created and
indexed. Then, on a signal sent to all publishers, these peers start publishing
all their documents as fast as possible. This is a “flash crowd” scenario, aiming
at stress-testing our system. Queries are posed and processed after all the views
are filled with data. Section 4.1 examines view materialization, while Section 4.2
studies the performance of the query execution engine.
5 https://www.grid5000.fr

ha
l-0

06
92

82
7,

 v
er

si
on

 1
 -

1
M

ay
 2

01
2

6 K. Karanasos, A. Katsifodimos, I. Manolescu, S. Zoupanos

4.1 View Materialization in Large Networks

We present three materialization experiments; many more can be found in [4].

Experiment 1: one publisher, varying data size, 64 consumers In this
experiment we study how materialization time is affected when the total size of
published data is increased. We use one publisher holding all the data in the
network. The size of the published data varies from 64MBs to 1024MBs.

Each of the 64 consumers holds one view of the form //catalog//cameraK cont

where K varies according to the peer that holds the view. For example, the first
consumer holds the view //catalog//camera1 cont, the second holds the view
//catalog//camera2 cont etc. This way, from each document the publisher ex-
tracts 64 tuples, each of which is sent to a different consumer. All the content
of the documents is absorbed by the 64 views.

We run two variations of the same experiment: (i) one for sequential tuple
sending where a publisher sends the tuples to their corresponding consumers one
after the other, and (ii) one for parallel tuple sending, where a publisher ships
the tuples to their corresponding consumers simultaneously. The graph at left in
Figure 2 shows, as expected, that the materialization time increases linearly with
the size of data published in the network in both cases. It also shows that the
materialization time in the case of parallel tuple sending is considerably shorter
(about 3000 sec. instead of 11500 sec. for absorbing 1024MBs of data).

Experiment 2: 64 publishers, varying data size, one consumer We now
focus on the impact of the number of (simultaneous) publishers on the capacity of
absorbing the data into a single view. The published data size varies from 64MBs
to 3.2GBs, and is equally distributed to 64 publishers. All the published data
ends up in one view. Similarly to Experiment 1, we test 2 modes of tuple-receiving
concurrency: (i) sequential tuple receiving and; (ii) parallel tuple receiving.

Figure 2 (center) depicts the materialization time as the size of the published
data increases. We observe that the materialization time increases proportionally
to the size of published data in both sequential and parallel tuple receiving
modes. Also, parallel tuple receiving reduces the view materialization time by
more than 50% (600 sec. instead of about 1400 sec. to absorb 3.2GBs of data).

From the two graphs (left, center) in Figure 2, we conclude that it is faster
for the network to absorb data using one consumer and many publishers rather
than many consumers and one publisher since it is slow for a peer to extract all
the available data by itself and ship them to the consumers.
Experiment 3: Community publishing A “community publishing” setting is
the closest to real world scenarios: a large and complex environment, with many
publishers and many consumers. We use a network of 250 peers, each of which
holds the same number of 1MB documents. We logically divide the network into
50 groups of 5 publishers and one consumer each. The data of all publishers in
a group is of interest only to the consumer of that group.The total amount of
data published (and shipped to the views) varies from 20GBs to 160GBs.

Figure 2 (right) shows that the materialization time grows linearly with the
published data size. This experiment demonstrates the good scalability prop-
erties of ViP2P as the data volume increases. Moreover, it shows that ViP2P

ha
l-0

06
92

82
7,

 v
er

si
on

 1
 -

1
M

ay
 2

01
2

ViP2P: Efficient XML Management in DHT Networks 7

 0

 2000

 4000

 6000

 8000

 10000

 12000

 64 512 1024

V
ie

w
 m

a
t.
 t
im

e
 (

s
e
c
)

Size of data published (MB)

Sequential tuple sending
Parallel tuple sending

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 64 512 1024 2048 3200

V
ie

w
 m

a
t.
 t
im

e
 (

s
e
c
)

Size of data published (MB)

Sequential tuple receiving
Parallel tuple receiving

 100

 200

 300

 400

 500

 600

 700

 800

 900

 20 40 60 80 100 120 140 160

V
ie

w
 m

a
t.
 t
im

e
 (

s
e
c
)

Size of data published (GB)

Materialization time

Fig. 2. Experiment 1: one publisher, varying size of data, 64 consumers (left); Ex-
periment 2: 64 publishers, varying data size, one consumer (center); Experiment 3:
publishing varying size of data in 50 groups of 5 peers each (right).

exploits many parallelization opportunities in such “community publishing” sce-
narios when extracting, sending, receiving and storing view tuples. Here we re-
port on sharing up to 160 GB of data over up to 250 peers with a throughput
of 238 MB/s while KadoP [1] scaled up to 1 GB of data over 50 peers with a
throughput of 0.33 MB/s and psiX [9] used 262 MBs of data and 11 computers.

4.2 Query Engine Evaluation
In this Section, we investigate the query processing performance as the data size
increases. We use 20 publisher peers, two of which are also consumers, while
another publisher is a query peer. The query peer and the two consumers are
located in three different French cities. The number of published documents
varies from 20 to 500; all documents contribute to the views.

The document used in this experiment is the same as in the previous ex-
periments with a slight difference: its root element catalog has only one child,
named camera. The views defined in the network are the following:

– v1 is //catalogID//cameraID//descriptionID,cont

– v2 is //catalogID//cameraID//{descriptionID, priceID,val, specsID,cont}

Each document contributes a tuple to each view. The tuples of v1 are large in
size, since the description element is the largest element in our documents. A
v2 tuple is quite smaller since it does not store the full camera descriptions.
We use two queries: q1 asks for the descriptioncont, specscont and priceval of
each camera. To evaluate q1, ViP2P joins the views v1 and v2. Observe that q1
returns full XML elements, and in particular, product descriptions, which are
voluminous in our data set. Therefore, q1 returns roughly all the published data
(from 10MB in 20 tuples, to 250MB in 500 tuples). q2 requires the descriptionID,
specsID and priceID of each camera. It is very similar to q1 with but it can be
answered based on v2 only. The returned data is much smaller since there are
only IDs and no XML elements: from 2KB in 20 tuples, to 40KB in 500 tuples.

Figure 3 shows the query response time and the time to get the first result
for the two queries. The low selectivity query q1 in Figure 3 (left) takes longer
than q2 (right), due to the larger data transfers and the necessary view join. The
time to first result is always constant for both q1 and q2 and does not depend
on the result size. For q1, a hash join is used to combine v1 and v2, and thus no
tuple is output before the view v2 has been built into the buckets of the hash
join. This is done around one second in the case of q1 and about 300 ms for q2.

ha
l-0

06
92

82
7,

 v
er

si
on

 1
 -

1
M

ay
 2

01
2

8 K. Karanasos, A. Katsifodimos, I. Manolescu, S. Zoupanos

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 20 100 200 500

Q
u
e
ry

 r
e
s
p
.
ti
m

e
 (

s
e
c
)

Result size (tuples)

Query response time
Time to first result

 200

 250

 300

 350

 400

 450

 500

 20 100 200 500

Q
u
e
ry

 r
e
s
p
.
ti
m

e
 (

m
s
)

Result size (tuples)

Query response time
Time to first result

Fig. 3. Query execution time vs. number of result tuples for q1 (left) and q2 (right).

The ViP2P query processing engine scales quite linearly answering queries
in a wide-area network. The fact that ViP2P rewrites queries into logical plans
which are then passed to an optimizer, enables it to take advantage of known
optimization techniques used in XML and/or distributed databases.

5 Conclusion and Perspectives
We have presented the ViP2P platform for building and maintaining structured
materialized views, and processing queries using the views in a DHT network.
Our experiments show that ViP2P outperforms similar systems by several orders
of magnitude, in particular for the data publication throughput and the overall
volume of data published. Many more experiments are described in our technical
report [4]. We currently investigate a distributed version of our automatic view
selection algorithm [5]. We also consider multiple-level subscriptions, where some
views could be filled with data based on lower-level views.

Acknowledgements We experimented on Grid’5000 (https://www.grid5000.fr).
We thank A. Tilea, J. Camacho-Rodŕıguez, A. Roatis, V. Mishra and J. Leblay
for their help. This work was partially supported by ANR 08-DEFIS-004.

References
1. S. Abiteboul, I. Manolescu, N. Polyzotis, N. Preda, and C. Sun. XML processing

in DHT networks. In ICDE, 2008.
2. A. Bonifati and A. Cuzzocrea. Storing and retrieving XPath fragments in struc-

tured P2P networks. Data Knowl. Eng., 59(2), 2006.
3. L. Galanis, Y. Wang, S. R. Jeffery, and D. J. DeWitt. Locating Data Sources in

Large Distributed Systems. In VLDB, 2003.
4. K. Karanasos, A. Katsifodimos, I. Manolescu, and S. Zoupanos. The ViP2P Plat-

form: Views in P2P. Inria Research Report No7812, Nov. 2011.
5. A. Katsifodimos, I. Manolescu, and V. Vassalos. Materialized View Selection for

XQuery Workloads. In SIGMOD, 2012. To appear.
6. K. Lillis and E. Pitoura. Cooperative XPath caching. In SIGMOD, 2008.
7. I. Manolescu, K. Karanasos, V. Vassalos, and S. Zoupanos. Efficient XQuery rewrit-

ing using multiple views. In ICDE, 2011.
8. I. Miliaraki, Z. Kaoudi, and M. Koubarakis. XML Data Dissemination Using

Automata on Top of Structured Overlay Networks. In WWW, 2008.
9. P. R. Rao and B. Moon. Locating XML documents in a peer-to-peer network using

distributed hash tables. IEEE TKDE, 21, 2009.
10. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and

routing for large-scale peer-to-peer systems. In ICDSP, Nov. 2001.
11. G. Skobeltsyn, M. Hauswirth, and K. Aberer. Efficient processing of XPath queries

with structured overlay networks. In OTM Conferences (2), 2005.

ha
l-0

06
92

82
7,

 v
er

si
on

 1
 -

1
M

ay
 2

01
2

http://hal.inria.fr/hal-00644679

	Lecture Notes in Computer Science
	Introduction
	Platform Overview
	ViP2P Peer Architecture
	Experimental Results
	View Materialization in Large Networks
	Query Engine Evaluation

	Conclusion and Perspectives

