XML materialized views in P2P networks

loana Manolescu, Spyros Zoupanos

INRIA Saclay-ile-de-France, 4 rue Jacques Monod, 91893 Orsay Cedex, France

firstname.lastname@inria.fr

ABSTRACT

‘We consider the efficient, scalable management of XML documents
in structured peer-to-peer networks based on distributed hash table
(DHT) indices. We present an approach for exploiting indices (or
materialized views) deployed in the P2P network independently by
the peers, to answer an interesting dialect of tree pattern queries.
We describe the query (and view) language, provide a rewriting al-
gorithm, discuss view definition indexing strategies based on the
DHT, and compare their performance through a set of experiments
on a completely deployed platform.

1. INTRODUCTION

The development of electronic document formats has lead to the
creation of large warehouses of structured documents, stored and
automatically processed to some extent by companies and other or-
ganizations (e.g. government bodies etc.). XML data management
systems have become more performant over the years, and are cur-
rently able to handle well volumes of data such as can be hosted
in a single computer. Larger data volumes, or handling documents
produced by distributed parties, wishing to retain control over their
data, requires the usage of distributed architectures.

In this paper, we describe our approach for building extensible,
scalable, flexible XML warehouses in a distributed, peer-to-peer
(P2P) architecture. To be able to provide performance guaran-
tees, we consider structured P2P networks, more specifically those
based on a distributed hash table (DHT) [10] index. Each document
resides at a specific peer. Each peer may choose to materialize a set
of views, described in a tree pattern language. To disseminate in
the network knowledge about the view, we index view definitions
in the DHT. Each peer may pose queries, expressed in the same tree
pattern language as the views. The processing chain for a query ¢
thus becomes: lookup the view definitions pertinent for g, say V;
rewrite g using the V and pick a rewriting, say r; execute r to obtain
the results of q.

The problem addressed in this paper can thus be recast as: es-
tablishing an architecture, and algorithms, for answering a flavor
of XML tree pattern queries using materialized views in a DHT
setting.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

The contributions of this paper are as follows. (1) We describe a
scalable and generic architecture for managing and exploiting ma-
terialized XML views in the DHT. (2) We present a new tree pat-
tern query rewriting algorithm based on views, which can be used
regardless of the setting (distributed or not). (3) We study several
view definition DHT indexing strategies in our architecture. (4) We
report on the performance of a complete functional implementation
of our proposed architecture and algorithms.

2. ARCHITECTURE AND OUTLINE

~ vl

v4

g g

Figure 1: Architecture overview.

The architecture we envision is depicted in Figure 1. Network
peers labeled p: to pg store documents, shown as triangles, and/or
views, shown as tables. Such tables may feature attributes of type
xml (whose values are serialized XML subtrees), shown as trian-
gles inside tuples. We designate a document d or view v at peer p
by the notation d@p, respectively, v@p.

The tree pattern defining every view is indexed in the DHT. Query
processing can be traced following the numbered arrows in the Fig-
ure. Assume query q is asked at peer ps (step 1). Then, ps will per-
form a DHT look-up to find which view definitions may be useful
to rewrite the query. For instance, p2 and ps may return to pg rel-
evant view definitions (step 2). Peer ps will then run a view-based
query rewriting algorithm, trying to reformulate q based on these
definitions (step 3). A query rewriting is a logical algebraic plan
based on some views, in our example, v1 Qps3, v2@ps, and v3Qpg.
After picking a rewriting, pg transforms it into a distributed phys-
ical plan, which runs in a distributed fashion (step 4, thick arrows
denote data transfer). In our example, v> is sent to ps which joins
it with vz and sends the result to ps. At ps it joins with v; which is
sent from ps.

In the above, we assume each view v is complete, i.e. it includes
v(d) for any document d in the network. To obtain such views,
whenever a new document, say d;@p, in Figure 1, is published,
the publishing peer performs another type of lookup (step 5) to
determine (possibly a superset of) the view definitions to which
the new document may contribute tuples, i.e. such that v(d1) # 0.
In the Figure 1, such definitions are returned by p2, and p; finds
out that d; contributes some tuples to the view v4@pg. The tuples
are sent to pg (step 6), which adds them to the view extent.
Outline The remainder of the paper is organized as follows. Our
pattern language is discussed in Section 3. Section 4 presents the
algebra used for rewritings, and Section 5 describes the rewriting
algorithm. How views are materialized, indexed in the P2P net-
work, and looked up is discussed in Section 6. We present our
experiments in Section 7, discuss related works in Section 8, then
conclude.

3. PATTERNS

We will rely on a tree pattern dialect P, defined as follows.

(1) Pattern nodes can correspond to XML internal nodes (elements
or attributes), or to leaves (attribute values, or words in text occur-
ing inside XML elements). For presentation purposes, we do not
distinguish between elements and attributes. Observe that we allow
a simple word to make up a pattern node, which corresponds to the
importance that keyword searches play in our context. We extend
the XPath descendant axis to consider that words are descendants
of their closest element or attribute ancestors (and extend this de-
scendant relationship via transitivity in the normal way).

(2) Each internal pattern node carries an XML node label from a
tag alphabet A; = {a,b,c,...}. Each leaf node carries a word
label from a word alphabet A,, = {a,b,c...}.

(3) All pattern edges correspond to the descendant (//) relationships
between nodes. We consider that in a large-scale, decentralized sce-
nario, the distinction between child and descendant relationships is
not crucial (although it could be easily added).

(4) Each node may be annotated with zero or more among the fol-
lowing labels: id, standing for structural ID'; cont, standing for
the full XML subtree rooted at the node; and val, standing for the
concatenation of all text descendants of the node, in document or-
der. An id, cont or val label attached to a node denotes the fact that
the structural ID, the content or the value, respectively, of the node
belong to the pattern result. We assume that node identifiers con-
tain sufficient information to also identify the document to which
the nodes belong.

(5) Each internal node may be annotated with a predicate of the
form [val = ¢] where ¢ € A,,. Such a predicate denotes the fact
that data in the view is restricted to nodes on which this predicate
restriction applies.

We introduce a simple text syntax for our patterns. We denote
nodes by their A; or A, label. The possible id, val and cont
labels, as well as possible predicates over val, are shown as indices
to the node.

For instance, aiq cont 1S a pattern storing the structural ID and the
content of all a elements. We use paranthesis to show the nesting
of children inside parents, and commas to separate the children of
the same pattern node among themselves. For instance, a(b(c;a))
stores the identifier of elements found on some path matching
//a//b//c. The pattern a[yq1—5] (b, cia) stores the identifiers of all

!Structural identifiers are unique node identifiers that allow to de-
cide only by comparing the identifiers of two nodes m; and no,
whether n; is an ancestor of ny or not. Popular examples include
(pre-order, post-order) labeling [3], Dewey IDs [19] etc.

c elements having an a ancestor of value 5, and whose serialized
XML subtree contains the word b.

Let p be a pattern and d be an XML document. As customary,
an embedding ¢ : p — d of p in d is a function associating d
nodes to p nodes, preserving node labels and ancestor-descendant
relationships. The result of evaluating p on d, denoted p(d), is the
set of tuples obtained by lining together in a tuple, all structural
IDs and/or values and/or serialized content, for each embedding of
p in d. Extending this to a set D of documents, the semantics of
evaluating p over D is defined as Uge pp(d) which also identifies
the document to which the nodes belong.

We say two patterns p1, p2 are equivalent, denoted p1 = po, if
for any database D, p1 (D) = p2(D). The P pattern dialect we use
is closely related to XPath//>} [15], and indeed the polynomial-
time containment decision algorithm of [15] can be adapted to P
patterns. Thus, P pattern equivalence can be established in poly-
nomial time in the size of the patterns.

4. ALGEBRAIC QUERY REWRITING

Let ¢ € P be aquery and V = {v1,v2,...,vr} aset of views,
v; € P,1 < i < k. A rewriting of q using V is an expres-
sion e(v1,ve,...,vr), belonging to a logical algebra A (which
we describe next), such that e = g, that is, for any database D,
e(v1(D),vs(D), ..., v4(D)) = ¢(D).

Let v be a view and op, op’ € A be algebraic expressions (or
plans, in short). For explanation purposes, whenever a pattern
stores either the identifier or the value or the content of a node
labeled [, we will use either [.id or l.val or l.cont, respectively,
as the name of the corresponding attribute. The following plans
belong to A:

(1) scan(v) (or v, in short) is a scan of all v tuples.

(2) mprist(op) is a projection over op, where pList is the list of
columns to keep.

(3) gcond(op) is a selection over op, where cond is a conjunction
of predicates of the form 7 ® c or ¢ ® j, where ¢, j are op attribute
names, ¢ € Ay, and ©® € {=, <} is a binary operator. We use
< to designate the “is ancestor of” predicate. Thus, assuming the
attributes named ¢ and j contain structural identifiers, o;<; (op) re-
turns those op tuples where the identifier in attribute ¢ corresponds
to an ancestor of the node whose identifier is in attribute j.

(4) nav(op, i, np) is a navigation operator, applying the navigation
described by the pattern np over the ¢ attribute of op. Two restric-
tions apply. First, ¢ must be a cont attribute, as navigation only
makes sense inside an XML fragment. Second, np nodes must
not have id indices, since it is generally not possible to determine
the structural identifier corresponding to a node by only consider-
ing a fragment enclosing the node. For example, let v = aiq cont-
The operator nav(scan(v), a.cont, b(ceont, deont)) returns tuples
with 4 attributes: a identifiers, a contents, and contents of ¢ and d
descendants of a, having a common b ancestor below a.

(5) op Mpred op' isa join operator, where pred is a predicate as
for selections.

(6) fetch(op, i), where op’s attribute ¢ contains element identifiers,
adds to each op tuple an extra column, containing the serialized
(cont) representation of the XML subtree rooted in the node whose
identifier was in column ¢ in that tuple.

To properly define the rewriting problem we face, we need a few
auxiliary notions.

Two plans a1,a2 € A are algebra-equivalent if as can be ob-
tained from a; via: usual rewriting rules from the relational algebra
(e.g. pushing selections and projections, join re-ordering etc.); tran-
sitive closure of ancestor-descendant predicates; or pattern compo-

q a Tt
/\\d ‘
c//K\e [val=5] a.idD:<]a.id
t |
cont va Tb.id°<c.id val=5
v2 v3 <] scan
vi aid aid a.id < h.id V3
bid cont M ” scan
. av
id cont d val rWb.cont,//e.val \
scan v2
"

Figure 2: Sample query, views, and rewriting.

sition. We illustrate the last two items via examples. The plan
Oa.id<c.idAb.id<c.id(0P1 Da.id<b.id Op2) is algebraically equiv-
alent to 0p.id<c.ia(0p1 ™Ma.id<b.id Op2), given that the predicate
a.id < c.id is implied by a.id < b.id and b.id < c.id. Finally,
let Pa = Qconts Pb = bcont, DPe = Cconts and Pbe = bcont (Ccont)~
Then, 7rc.cont (nav(scan(pq), a.cont, pye)) =
Te.cont (nav(nav(scan(pa), a.cont, py), b.cont, p.)). Intuitively,
the left-hand plan navigates directly from a to its descendants on
the path //b//c, whereas the right-hand plan navigates first to the
b descendants (inner nav) and then from those, to their ¢ descen-
dants (outer nav).

An algebraic plan a € A is minimal if there exists no sub-
expression a’ of a, such that a = a’. As an example, let p, = a;q4,
Py = bid, and pe = ciq, and consider o = 4.4 ((scan(pa)

Da.id<b.id SCAn(Py)) Ma.id=a.id (scan(pa) MNa.id<c.ida scan(pe)))

Expression « returns the identifiers of all @ elements having b and ¢

descendants. Then, o = ', where o’ = 74.:a((scan(pa) MNa.id<b.id

scan(py)) Ma.id<c.id scan(pe)) is a sub-expression of «. There-
fore, o is not minimal; o/ is.

Query rewriting problem Given a set of views V and a query
q, the problem of rewriting g based on V consists of finding the
set of all minimal equivalent 4 rewritings of ¢, up to algebraic
equivalence.

Figure 2 provides an example. The only rewriting of the query ¢
based on the views v; to v is the plan shown in the Figure. Observe
that no view contained a node labeled e, but we extract it from the
b.cont attribute via navigation. To properly combine v; and v, the
b node of v; is “pushed” under the a node of vy by the leftmost
join, but an extra selection is needed to specify that it is above the
cnode.

On patterns, algebra, and rewriting We make here some useful
remarks concerning our pattern language P and our algebra lan-
guage A. First, observe that P is conjunctive - intuitively, no P
pattern can refer e.g. to all the a nodes lacking b descendants. As a
consequence (and similarly to the context of rewriting conjunctive
Datalog queries with conjunctive views [14]), adding union (U) to
A does not increase the set of equivalent rewritings for a given P
query q.

Second, observe that for any expression e; € A and database
D, if e1(D) = 0, then ez(e1(D)) = 0 for any A expression ez
built on e;. To see why this is true, notice that each of the algebraic
operators op, applied on an empty input), returns ().

Finally, we notice an important property concerning the useful-
ness of a view v € P in rewriting a given query g € P:

(x) If v can be used to rewrite g, then there exists a label- and
structure-preserving embedding ¢ : v — q.

Algorithm 1: DPR: dynamic programming query rewriting

Input : query pattern g, view patterns vi, . .., Un
Output: minimal algebraic rewritings of ¢ using v1, ..., v,
1 foreach nq € q do
L Pi(ng) =10
foreach v; € {v1,...,v,} do
foreach embedding ¢ : v; — q do
ppp’ +— new ppp(scan(v;), vi)
ppp” « extend(ppp’)
handlePPP(ppp”, 1)

N QAR W N

8j7=2

9 repeat

10 | Pj(n) — Oforalln €q
11 foreach n € g do

12 foreach ppp? € P;_1(n), pppl" € Pi(n) do

13 PPP2 < PPP;—1 Xn.id=n.id PPPT

14 handlePPP(ppps, §)

15 foreach m € g, m is a child of n in q do

16 foreach ppp’_, € P;j_1(n), pppi" € Pi(m) do
17 PPP3 < pPPj—1 Mn.id<m.id PPPI"

18 handlePPP(ppps, 7)

19 j—j7+1
20 until Vn € ¢, Pj(n) =0

Proof: Assume on the contrary that a rewriting of ¢ based on v
exists, and that v cannot be embedded into ¢. Let d, be the XML
document obtained by copying each ¢ node into an XML element,
preserving g structure. Clearly, q(dq) # 0. Since v cannot be
embedded in ¢, by definition of view contents, v(d;) = 0. Let
Dy = {d,} be the database consisting of exactly d,. We have
q(Dq) # 0, whereas for any algebraic expression e, in virtue of
the second observation above, e(v(Dgy)) = (). Thus, we can ex-
hibit a database D such that e(v(Dq)) # q(Dq) for any algebraic
expression e. Therefore, no equivalent rewriting of ¢ can be built
based on v, which contradicts our hypothesis.

S. REWRITING-BASED QUERY ANSWER-
ING

In this section, we describe how queries can be answered in our
architecture, based on materialized tree pattern views.

We first describe two algorithms (Sections 5.1 and 5.2) for find-
ing algebraic rewritings of a query ¢ based on a set VV of views. Our
algorithms are based on a generate-and-test paradigm: we build in-
creasingly larger algebraic expressions, and test them for equiva-
lence to the query. Such tests are complicated by the difference of
language: rewritings are .4 expressions, whereas the query belongs
to P. To overcome this, rewriting manipulates (plan, pattern) pairs
(or ppps, in short), that is, pairs consisting of an algebraic plan and
an equivalent tree pattern. This equivalence is established from the
start: rewriting starts with one ppp for every view v, where the pat-
tern is v and the plan is scan(v). As larger ppps are constructed,
equivalence is ensured between the pattern and the pair.

Our rewriting algorithms are detailed in Sections 5.1 and 5.2,
and some of their properties are considered in Section 5.3. We then
briefly explain (Section 5.4) how logical rewritings are tranformed
into executable plans.

5.1 Dynamic programming algorithm (DPR)

The first algorithm we consider follows a dynamic programming
approach (Algorithm 1), and therefore we term it DPR for dynamic
programming rewriting. DPR organizes the ppps enumerated dur-
ing the search in a family of sets using a family of parameterized
ppp sets Pj(ng), where:

e ng is a query node, and for any j, all the ppp in P;(nq)
have at least one node which could be embedded in nq (via a
label- and structure- preserving embedding as in the previous
section);

e j is an integer, equal to the number of joins in the algebraic
plan of any ppp in P;(ngq) plus one. Thus, for any ng € ¢,
plans in P;(ng) are built directly from a single view v;; the
algebraic plan of any ppp in P2(ngq) is a join over two views,
the plans of ppps in P3(ng) is a join over three views etc.

Populating the initial ppp sets The first step in the algorithm is to
populate the sets P; (lines 3-7). We first compute, for each view v;,
all possible embeddings of v; in g, and create a pair ppp’ for each
embedding ¢ : v; — ¢, in order to reflect all the ways in which v;
could be used to rewrite the query (line 5).

A subtlety arises now: our simple embeddings do not take into
account node attributes, which may lead to missing some opportu-
nities for rewriting. For instance, consider a view acon+ and a query
a(beont). Clearly, the query can be rewritten using the view, but for
this, we need to inject the information that the view stores the full
a-rooted subtrees in the rewriting process. To that effect, we ex-
tend ppp’ by (i) adding nodes to its pattern, and (i7) adding nav
operators on top of the plan, whenever a v; node storing cont is
embedded into a non-leaf ¢ node (line 6). We now outline the role
of the extend function (for which we do not show pseudo-code).
Let nv be a v; node labeled lcont, and ¢(nv) = ngq. Let desc(ngq)
be the forest obtained by copying ng’s children subtrees, stopping
above nodes carrying the id label. Extending ppp’ by navigation
produces a new pattern, ppp’’, which is a copy of the one in ppp’
but (¢) adds desc(ng) as children of nv in the pattern and (i) adds
nav(...,nv.cont, desc(nq)) on top of the equivalent plan.

We illustrate the extension of ppp’ for the view v; and the query
q in Figure 2. The initial ppp is ppp’ = (scan(vi),v1). The single
bnode of v; is embedded into the b node of ¢. By extension, we ob-

tain the pair (nav(scan(v1), b.cont, (ccont, €vat)), beont(Ccont, €val))s

which we denote ppps in the sequel. The query nodes covered by
ppps are those labeled b, ¢ and e.

Observe that in ppp”, all possible extensions via navigation are
applied. Thus, we navigate from b both to find ¢ descendants, and
to find e descendants. However, the rewriting in Figure 2 only uses
the e,q; extension of v1’s b node, and uses vz to obtain the c query
node. The extra navigation to c.ont Will be recognized as unneces-
sary, and removed, prior to producing solutions (see below).

Extended patterns are inserted in all the sets P;(ng) to which
they belong, by calling the function handlePPP, shown in Algo-
rithm 2. This function checks whether the incoming ppp can be
turned into a solution after some adjustments, i.e. selections and
projections. Adjustment also eliminates useless navigations which
had been eagerly added at line 6 in Algorithm 1.

Algorithm 2 then checks (line 5) if the algebraic plan in ppp plan
is new, i.e. not algebraically equivalent to the plan of any other pre-
viously explored ppp. This test is important for two reasons. First,
recall that we are interested in solutions up to algebraic equivalence
only. Second, if a newly found ppp’s plan is algebraically equiv-
alent to a plan already explored, it is important that we detect this
early on, to avoid the time-consuming useless search based on the

Algorithm 2: (Plan, pattern) pair handling

Input : (plan, pattern) pair ppp, layer index j
Output: none (side effects on the set P;(n) and on the
solution set S)
1 ppp2 < adjust(ppp, q)
2 if ppps.pattern = g then
3 L add ppp2.plan to S

4 else

5 if ppp2 is a new partial solution for q then

6 foreach | € q such that a ppp2.pattern node can be
embedded in | do

7 | add ppp2 to P;(1)

new ppp. How testing is performed will be explained and better
understood shortly below.

In the example of Figure 2, lines 1-7 of Algorithm 1 produce
the following sets: Pi(a) = {(scan(vz2),v2), (scan(vs),vs)};
Py(b) = {ppps}, where ppps is obtained by navigation as ex-
plained above; Pi(c) = {(scan(v2),v2), ppps }; Pi(d) =
{(scan(vs), v3)}; and P1(e) = {ppps}-

Combining (plan, pattern) pairs The second part of Algorithm 1
develops increasingly larger plans and patterns, progressing towards
rewritings. We proceed in layers, indexed by the layer counter j,
starting from j = 2. In each layer, we add (plan, pattern) pairs in
the sets Pj(nq), nq € g, by building node ID equality joins and
structural joins out of the (plan, pattern) pairs contained in the sets
P;_1 and P;. We use one ppp from P; in all joins, in order to
develop only left-deep join plans, since rewriting needs to enumer-
ate all plans only up to algebraic equivalence. Thus, the equivalent
bushy join plans (and their ppps) do not need to be developed.

We now trace this on the example in Figure 2, starting on the sets
P, enumerated above.

For , we obtain:

1. For n = a, considering equi-joins on a.id (line 13 in Algo-
rithm 1), we add to P>(a), P2(c) and P2 (d) the (plan, pattern) pair
(scan(v2) g.id=a.ia 5€an(v3), @id(Cid,cont, dvat)), Which we
will denote pppjl- in the sequel.

2. Forn = a and m = b, we join (scan(vz), v2) with ppp, on
a.td < b.id and obtain the pair ppp? described by:

e the plan scan(vz) ™g.id<b.id
nav(scan(vi), b.cont, (Ccont, €val))

o the pattern aid(bid,cont (Ccont, eval)y Cid,cont)

In this pattern, one ¢ node is a child of the b node and the other is
a child of the a node. To better fit ppp? to the query, the adjust
function adds a selection ensuring that the second ¢ node is a child
of the b node, turning ppp?- into ppp?:
e the plan 0y id< c.ia(scan(vz) Do id<b.id
nav(scan(vi), beont, (Ccont, €val)))

o the pattem aid(bid,cont(ccont7 Cid,cont, eval))

We add ppp? to the relevant sets, namely: P2 (a), P»(b), P2(c) and
P2 (6)
3. Still for n = a and m = b, we join (vs,v3) with py on a.id <
c.id and obtain the pair ppp? consisting of:
e the plan scan(vs) Ma.id< b.id
nav(scan(vi), beont, (Ceonts €val))

o the pattern a;q(bid,cont(Ceonts €vat), dval)

ppp] is added to the sets P2 (a), Px(b), Pa(c), P2(d) and Pz(e).

At this point for j = 2 we have Py(a) = {ppp}, ppp?, ppp?},
Pa(b) = {pppj,ppp;}, Pa(c) = {ppp;,pppi, ppps}, Pa(d) =
{pppj, ppp;} and Ps(e) = {ppp}, ppp; }.

For, forn = a, we combine ppp? € P»(a) with (scan(vs), vs)

€ Pi(a) and obtain the pair ppp? having:

e the plan scan(vs) DMa.id=a.id Ob.id< c.id($can(v2) Ma.id< b.id
nav(...))

e the pattern aid(bid,cont (Ceont, Cid,cont, €vat), did)
where nav(. . .) is the nav plan of ppps.

Signatures for efficient equivalence checks We now discuss check-
ing that the algebraic plan of a newly found ppp is not algebraically
equivalent to any previously found plan (line 5 in Algorithm 2).
One could test the plan directly against the whole set of existing
plans. However, this would be inefficient even for small plan sets,
since it requires enumerating many rewriting rules (such as join
re-ordering) to see which plan may turn into another etc.

Instead, we assign to each (plan, pattern) pair a signature, intu-
itively describing “what view nodes does it use to cover each query
node”, or “how does it cover query nodes”. More precisely, as ex-
plained above, each node n,, in the pattern of the pair is obtained
from either (¢) one view node, or (i¢) an ID equality join over sev-
eral view nodes. By construction, the pattern from the pair can be
embedded in the query; let ny be the query node to which n, em-
beds. In case (2), the pair signature will associate to n, the single
view node. In case (i¢), the pair signature will associate to n, the
set of view nodes joined by ID equality.

For example, consider again the (plan, pattern) pair pppy. Its sig-
nature is: {b — {bv1};¢ — {Cext,v; }; € — {€eat v, }}, Where by,
is the b node in vy, and Cegt,v; , €cat,v, are the nodes obtained by
extending v, navigating downwards from the b node. Now, con-
sider the pair ppp}, obtained by joining v2 and v3 on their a nodes.
Its signature is: {a — {@vy, Guvg }5¢ — {Cvs };d — {duvs }}-

The following property holds for ppps and their signatures:

(o) Let ppp1, ppp2 be two (plan, pattern) pairs and s1, s2 be their
signatures. The plans of ppp: and ppp> are algebraically equiva-
lent iff s1 = s2.

Based on this property, a set of explored signatures is maintained
during the search, and a new ppp is added to some P;(nq) set only
if its signature was not previously explored. This resembles dy-
namic programming-based query optimization, where only one join
plan for a given set of relation occurences is kept [16].

5.2 Depth-first search algorithm (DFR)

Algorithm DPR, as all dynamic programming algorithms, tends
to produce solutions towards the end of the search only. If there
are many views to start with, this means the rewriting time may
be prohibitive. Therefore, we also develop an alternative rewriting
algorithm DFR, based on depth-first search. DFR differs from the
DPR in the way it organizes and explores its ppps.

Instead of the sets P;j(ng), DFR uses a family of sets C;(ng),
where ngq is a query node, and ¢ indicates how many query nodes
are covered by a ppp in C;. Thus, if a view v of 5 nodes was em-
bedded in the query, the pair (scan(v), v) will be added to the sets
Cs(ngq) for each query node to which some v node was embed-
ded. During plan enumeration, DFR always attempts to combine:
a ppp from a set C;(ngq) of the largest possible ¢ value; and a ppp
of the form (scan(v),v) for some view v. Thus, similarly to DPR,
DFR only enumerates left-deep plans; but, differently from DPR,

it builds on the plan covering the largest number of query nodes,
regardless of how many views that plan uses. Both algorithms use
ppp signatures to detect equivalent plans.

The trade-offs between DPR and DFR are the following. DFR
often finds some rewritings much faster than DPR, since it greed-
ily progresses towards rewritings covering as many query nodes
as possible. In exchange, the total DFR search time is larger than
DPR’s, due to the “disordered” fashion in which DPR explores the
search space. In practice, given that one typically needs only one
(or a few) rewritings, if the set of views is very large, DFR (con-
strained to stop after a few rewritings or at a timeout) is preferrable.

5.3 Remarks on the rewriting algorithms

We make here some remarks on the two rewriting algorithms.
Their termination is due to the fact that we only explore ppps whose
minimized pattern can be embedded in the query, and there is only
a finite number of such patterns. Patterns are systematically mini-
mized when creating new ppps (details omitted for lack of space;
the algorithm is closely inspired from [4]).

The algorithms’ correctness relies on the fact that the plan and
the pattern of a ppp are always equivalent. Hence, when the pattern
is found equivalent to the query (line 2 of Algorithm 2), the plan is
a rewriting. The equivalence among the plan and the pattern of a
ppps is established from the start, and is maintained at every step
when two ppps are combined into a larger one. The adjust func-
tion plays a role here, as illustrated in the previous section by the
transformation of ppp? into ppp]s. The algorithms’ completeness
is ensured by their generate-and-test approach, and by proposition
(o), which ensures we only disregard plans for which an equivalent
one has already been explored.

Regarding efficiency, both algorithms only consider views that
can be embedded in the query, which helps trim down useless parts
of the search space. Finally, one can question their effectiveness,
or: how can we choose a good rewriting among the possible ones,
or, if we stop the search after finding just a few solutions, how do
we ensure those are good? To answer this, we first have to choose
a measure for rewriting quality. While the real execution time for
a given rewriting depends on the physical plan that can be devised
to implement the logical rewriting plan, we found reasonable to
consider a rewriting is good if it uses few views, on the basis that
many-views rewritings entail joins, which may be expensive. The
rewriting using the least views can be found by exhaustive search.
However, we cannot ensure finding it early on during the search. A
k-optimal solution can perhaps be found along the lines of [2]; we
will consider that as part of our future work.

5.4 After rewriting

A given logical rewriting must be transformed into a physical
(executable) query plan in order to produce results. This step cor-
responds to physical query optimization, and is performed by a ded-
icated module present on each DHT peer. Since the views involved
in the rewriting may reside on different peers, the physical plan is a
distributed one. The tuple-oriented execution engine includes oper-
ators such as view scan, selection, projection, hash join, sort, send
and receive to handle data transfers, and two physical structural join
operators, StackTreeDesc and StackTreeAnc [3].

Clearly, many physical plans can be used to implement a given
logical one, and distribution only increases the search space. Our
optimizer applies standard heuristics for choosing the peer on which
to place each operator [20] in order to reduce the search space. The
plan retained is the one that minimizes (%) the number of inter-peer
data transfers, and among those with least transfers, (¢¢) the num-
ber of sort operators. In the best case, if all the joins of a rewriting

plan are structural, a fully pipelined (non-blocking) physical plan
is generally found.

6. P2P VIEW MANAGEMENT

We have so far explained how to exploit views for query rewrit-
ing. In this section, we consider how views are materialized (Sec-
tion 6.1), and identified in order to rewrite a query (Section 6.2)
in the DHT network. Both operations require some view definition
indexing in the DHT. We stress that we do not index view extent
(tuples), but only the pattern defining the views.

We start by introducing a useful term: if d is a document and v
is a view such that v(d) # (), we say d affects v.

6.1 View materialization

Assume peer p decides to establish a view v. Then, when a peer
pa publishes a document d affecting v, pq needs to find out that v
exists. To that effect, view definitions are indexed for document-
driven lookup as follows. For any label (node name or word) ap-
pearing in the definition of the views v1,v2, ..., v, the DHT will
contain a pair where the key is the label, and the value is the set of
view URLs vy, va, . . ., Uk.

When a peer pq publishes a document d, pg performs a lookup
with all d labels (node names or words) in order to find a superset
S, of the views that d might affect. Subsequently, pq evaluates
v(d) for each v € S,. We implemented this step based on a SAX
traversal, with time complexity in @(|d| X |v|). In practice, large
fragments of d are typically not interesting for a given view v, thus
computing v(d) tends to spend some time traversing useless parts
of d. To share this cost, we group view definitions in batches of
some size n (we set n = 10) and evaluate all the views of a batch
in a single d traversal. Thus, d fragments useless to all batch views
are parsed only once per batch.

Finally, p4 sends, for each v € S, such that v(d) # 0, the tuple
set v(d) to the peer p, publishing v. For performance, tuples are
encoded so that the identifier of d (a rather lengthy URL) is sent
only once, even if it appears (possibly several times) in each tuple
of v(d) (recall that element IDs contain sufficient information to
identify the document they belong to). The decoding is reversed on
arrival at p,, prior to storing the tuples.

We have so far considered that v is published before the docu-
ments affecting it. The opposite may also happen, i.e. when v is
published, a document d affecting v may already exist, and v(d)
needs to be added to v’s extent. To that effect, we require the pub-
lisher pg of a document d to periodically look up the set of views
potentially affected by d, and send v(d) to those views as described
above. Thus, v will be up to date (reflecting all network documents
that affect it) after the periodical check and subsequent actions have
been performed by all document publishing peers.

We end the section by considering view maintenance in the face
of document deletion or change. When documents are deleted from
the system, a similar view lookup is performed, and the peers hold-
ing the views are notified to remove the respective data. We model
document changes as deletions followed by insertions.

6.2 Identifying views for rewriting

A second form of view definition indexing is performed in order
to enable finding views that may be helpful for rewriting a given
query. In this context, a given algorithm for extracting (key, value)
pairs out of a view definition is termed a view indexing strategy.
For each such strategy, a view lookup method is needed, in order to
identify, given a query g, (a superset of) the views which could be
used to rewrite ¢q. Many strategies can be devised. We present two
that we have implemented, together with the space complexity of

the view indexing strategy, and the number of lookups required by
the view lookup method.

Label indexing (LI): index v by each v node label (either some
element name a € A; or some constant a € A,,). The number of
(key, value) pairs thus obtained is in O(|v]).

View lookup for LI: look up by all node labels of g. The number
of lookups is ©(|q|).

The LI strategy coincides with the view definition indexing for
document-driven lookup (described in the previous section). Its
drawback is its lack of precision. For instance, a view arp(crp)
will be retrieved for all queries involving the terms a, although it is
useless for all queries not containing c. A more precise strategy is
the following.

Leaf path indexing (LPI): let LP(v) be the set of all the dis-
tinct root-to-leaf label paths of v. Index v using each element of
LP(v) as key. The number of (key, value) pairs thus obtained is in
O(LP(v))).

View lookup for LPI: let LP(q) be the set of all the distinct root-
to-leaf label paths of q. Let SP(q) be the set of all non-empty
sub-paths of some path from LP(q), i.e., each path from SP(q) is
obtained by erasing some labels from a path in LP(q). Use each
element in SP(q) as lookup key.

As an example, let v = arp(brp, crp), then v will be indexed
by the keys a(b) and a(c). Let q be the query a(f(brp,cip)).
With LPI the view lookups will be on a, a(f), a(b), a(c), f, f(b),
f(c), b, and c. Thus, v will (correctly) be identified as potentially
useful to rewrite ¢. Indeed, if a second view v’ = f1p exists, then
q=0f<onf<e(VDaxy V).

Let h(q) be the height of ¢ and I(g) be the number of leaves in g.
The number of lookups is bound by ¥pe 1. p(4)2'"! < I(g) x 2"(2.

The view lookup strategies described above can be shown to be
complete, thanks to Proposition (x) (Section 4).

7. PERFORMANCE EVALUATION

We have fully implemented the platform described so far. We
used Java 6 for the implementation.

We describe preliminary experiments carried on a cluster of 10
PCs with Intel Xeon 5140 CPU @ 2.33GHz and 4GB of Ram.
Berkeley DB [7] (version 3.2.76) and FreePastry [11] (version 2.1
alpha) are used for storing view data and indexing view definitions
respectively. For the experiments we use 30 peers which are dis-
tributed uniformly to all the computers of our cluster. Together, the
peers publish a set of 100 XMark benchmark documents [17], and
30 views. All the documents affect all the views. Adding unre-
lated views and documents do not impact the performance of query
processing, which is the main focus of our experiment.

The testing scenario is as follows. First, the views are published
and indexed in the DHT network using the LI strategy, and the
views are filled with data. A query is asked at one of the peers,
which performs all necessary steps in order to process the query
and return answers. For the graphs that follow, we use 7 sets of 100
documents of increasing data size. The sizes of the sets begin from
11MB and extended to 1.6GB. For every set we perform the same
experiment 4 times in order to get more accurate average values.

7.1 View building

In Figure 3 we can observe the total time that the peers devoted
in extracting tuples from the documents for all the views. Recall
that these measurements are summed up for all the peers and may
even be artificially high because in fact views are materialized in
parallel. What is interesting to notice in this diagram is that the ex-
traction time is linear compared to the total size of the documents,
something that was also described in Section 6.1.

2500000

2000000

1500000

1000000

Total tuple extraction time (ms)

500000

0 200 400 600 800 1000 1200 1400 1600 1800
Total document size (MB)

Figure 3: Total tuple extraction time for sets of documents of
different sizes.

10000000
9000000
8000000
7000000
6000000
5000000
4000000

3000000

Total observed materialization time (ms)

2000000

1000000

0 200 400 600 800 1000 1200 1400 1600 1800

Total document size (MB)
Figure 4: Total observed view materialization latency for sets
of documents of different sizes.

After extracting the necessary tuples for a view from a document,
the next step to be done is to send them and to store them at the peer
that is responsible for that specific view. We call the time needed
to perform this action as “observed materialization latency” and
Figure 4 shows how this value is affected by the total document
size.

7.2 Query processing

The query processing includes rewriting the query using a set of

views that produces a logical plan, optimizing a logical plan for ex-
ecution that produced a physical plan and, in the end, the execution
of the latter. In this experimental section we will consider the query
site;q(regions;q(africa;q(item;q)), catgraph;qa(edgeiq)).
Query rewriting & optimization These two steps are performed
in memory by a single peer, and are extremely fast when compared
to full execution (of course regardless of the database size). More
specifically, in the 30 view experiment that we analyze, the rewrit-
ing needed on average 50.68 ms and the optimization 13.82 ms.
The query rewriting module used the DSR algorithm, restricted to
develop at most 10 rewritings.
Query execution You can observe in Figure 6 how much time a
physical plan needs to be executed for different document set sizes.
The plan that we execute is shown at Figure 5 and it joins 2 views
from which one of them is at the peer where we ask the query and
the other one is at a different peer.

Such plans are quite representative of our scenario because our

(9) SimpleProject
@195.83.212.160: 7000, 7001

(5) STD($1 anc $1)
@195.83.212.160:7000, 7001

/\

(0) Scan (4nodesView) (4) Receive
@195.83.212.160: 7000, 7001 @195.83.212.160:7000, 7001

(1) Scan(2nodesvView)
@172.20.1.2:7000, 7001

Figure 5: Physical plan of the query executed in the experi-
ments.

1800
1600
1400
1200

1000

Execution time (ms)

0 200 400 600 800 1000 1200 1400 1600 1800
Total document size (MB)

Figure 6: Execution time for increasing data size.

purpose is to established materialized views that are likely to cover
large parts of a query (or cover the query completely).

Table 1 shows the number of results that we get for sets of differ-
ent sizes. In Figure 7 we can notice that the execution time is linear
to the number of results obtained for our query. We should point
out that in 1.7 seconds we get 1.16 milions of results which is 680
results per millisecond.

Total document set size | # of results

11 109
48 600
100 4500
208 18000
413 72000

810 288000
1600 1160000

Table 1: Result size for the different sets of documents.

7.3 Evaluation outcome

In summary our experiments have shown that query execution
and view materialization scale up linearly with the total data size
in the scenario we considered. While limited, we consider these
results encouraging for the overall platform behavior. Moreover
query rewriting and optimization are reasonably fast demonstrating
that the overhead of views may be acceptable.

8. RELATED WORKS

Our work follows a series of approaches for handling large vol-
umes of XML documents in structured P2P networks, based on
DHTs [12, 8, 18, 1]. In these works, the focus is on indexing doc-
uments in the DHT so that XML queries can be processed fast.

1800

1600

1400

1200

1000

Execution time (ms)

0 200000 400000 600000 800000 1000000 1200000 1400000
of results

Figure 7: Execution time and result number.

In contrast, we focused on establishing and exploiting views over
the whole set of XML documents in the DHT, and exploiting these
views for query processing. The work described here can be seen
as a generalization of [1], which established a view of the form I;p
for any label (node or keyword) | appearing in some document.
The interest of the views we propose is that they can be established
by peers interested in improving the performance of a given set of
queries in the style of a local query cache, and they also allow “re-
publishing” (re-packaging) XML content, e.g. in order to structure
a topic-specific portal hosted by one peer or set of peers.

Our DPR rewriting algorithm is related to the one described in [6],
which rewrites queries expressed in a richer XAM formalism [5]
over XAM views, under structural constraints encapsulated in a
Dataguide [13]. The work described in [6] does not consider distri-
bution. In contrast, in our setting, given that documents and views
are published independently by different distribtuted parties, we
felt that the precise XAM features (nesting, optional edges, ...)
created fine distinctions that most users of our system would not
be willing to consider. Therefore, we rely on a simpler tree pattern
model in this work. Moreover, the Dataguide used in [6] to rewrite
queries impacts query rewriting at all levels, making it further dif-
ferent from the DPR algorithm we describe, which does not require
such constraints.

9. CONCLUSION

We have considered the problem of building and exploiting ma-
terialized XML views in a DHT network where peers indepen-
dently publish XML documents and/or materialized views. We
have proposed an architecture and algorithms for building and main-
taining the views, as well as for processing peer queries based on
the existing views in the DHT network. All the described algo-
rithms have been fully implemented in a functional Java-based plat-
form, on which we currently carry out experiments.

Many avenues for future work exist. The most important one
for now is to exploit the trade-offs between various view index-
ing strategies for query processing and for view materialization,
between space taken up by the view indexing pairs and time con-
sumed looking up views and processing extra view definitions that
are potentially not useful. We are also interested in improving
our physical optimizer so that it identifies quickly efficient dis-
tributed query plans, and in experimenting with holistic structural
twig joins [9], which we have used successfully in [1].

10. ACKNOWLEDGMENTS

We thank Alin Gabriel Tilea for his help in developing, maintain-
ing and testing the VIP2P platform. Part of the VIP2P code origi-
nates from the ULoad platform and has been developed by Andrei
Arion.

This work has been partially funded by Agence Nationale de la
Recherche, decision ANR-08-DEFIS-004.

11. REFERENCES

[1] S. Abiteboul, I. Manolescu, N.Polyzotis, N. Preda, and
C. Sun. XML processing in DHT networks. In ICDE, 2008.
[2] E N. Afrati, C. Li, and J. D. Ullman. Generating efficient
plans for queries using views. In SIGMOD, 2001.

[3] S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas,

and D. Srivastava. Structural joins: A primitive for efficient

XML query pattern matching. In /CDE, 2002.

S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and

D. Srivastava. Tree pattern query minimization. VLDB J.,

11(4), 2002.

A. Arion, V. Benzaken, and I. Manolescu. XML access

modules: Towards physical data independence in XML

databases. In XIME-P, 2005.

A. Arion, V. Benzaken, I. Manolescu, and

Y. Papakonstantinou. Structured materialized views for XML

queries. In VLDB, pages 87-98, 2007.

Oracle Berkeley DB Java Edition.

http://www.oracle.com/technology/products/berkeley-

db/je/index.html.

A. Bonifati, U. Matrangolo, A. Cuzzocrea, and M. Jain.

XPath lookup queries in P2P networks. In WIDM, 2004.

N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins:

optimal XML pattern matching. In SIGMOD, 2002.

[10] E. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and
I. Stoica. Towards a common API for structured P2P
overlays. In Proc. of IPTPS, 2003.

[11] Freepastry, an open-source implementation of pastry.
http://freepastry.org/FreePastry/.

[12] L. Galanis, Y. Wang, S. Jeffery, and D. DeWitt. Locating
data sources in large distributed systems. In VLDB, 2003.

[13] R. Goldman and J. Widom. Dataguides: Enabling query
formulation and optimization in semistructured databases. In
VLDB, 1997.

[14] A.Y. Levy, A. Rajaraman, and J. J. Ordille. Querying
heterogeneous information sources using source
descriptions. In VLDB, 1996.

[15] G. Miklau and D. Suciu. Containment and equivalence for a
fragment of XPath. J. ACM, 51(1):2-45, 2004.

[16] J. G. Raghu Ramakrishnan. Database management systems.
McGraw-Hill Professional, 2003.

[17] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,

I. Manolescu, and R. Busse. Xmark: A benchmark for xml
data management. In VLDB, 2002.

[18] G. Skobeltsyn, M. Hauswirth, and K. Aberer. Efficient
processing of XPath queries with structured overlay
networks. In OTM Conferences (2), 2005.

[19] I Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasundaram,
E. J. Shekita, and C. Zhang. Storing and querying ordered
xml using a relational database system. In SIGMOD
Conference, pages 204-215, 2002.

[20] A. Tomasic, L. Raschid, and P. Valduriez. Scaling
heterogeneous databases and the design of disco. In ICDCS,
1996.

[4

—

[5

—

[6

—_

[7

—

[8

—_—

[9

[

