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Abstract— We consider the efficient, scalable management of
XML documents in structured peer-to-peer networks based on
distributed hash table (DHT) indices. We present an approach
for exploiting materialized views deployed in the DHT network
independently by the peers, to answer an interesting dialect
of tree pattern queries. We provide algorithms to index and
materialize views in the DHT, show that the rewriting problem
is polynomial in the number of views, and describe rewriting
algorithms. Our approach is validated by experiments on the
complete platform deployed on 1000 peers in a wide area
network.

I. INTRODUCTION

Large-scale organizations need to produce, deploy and
exploit large volumes of data, and in particular structured
XML data. We are currently involved in the WebContent
R&D project (http://www.webcontent.fr), including partners
such as EADS, the European defense company, and CEA, the
French nuclear energy producer. The project focuses on giving
these companies efficient tools for gathering, enriching and
exploiting (e.g. by semantic and linguistic analysis) structured
documents from the Web (RSS feeds, crawled pages etc.)
or produced by the companies, within a structured content
warehouse, used for market analysis or Web intelligence
gathering. Information comes from many sites, depending on
where crawlers run, or where the analyst producing a company
report resides, and must be efficiently exploitable by the other
sites. The sites producing information may change over time,
as new ones may join and others may leave; such changes must
be handled transparently to the users. However, the network
dynamics is moderate, i.e., sites do not experience frequent
disconnects.

Within WebContent, we have devised a platform called
ViP2P, standing for Views in Peer to Peer, which enables effi-
cient distributed data management based on a DHT (dynamic
hash table [10]) and materialized XML views. ViP2P can
be seen as a tool for redistributing restructured data where
it is needed. Any ViP2P site (or peer) may establish some
materialized views, which reflect data published anywhere in
the network, that the peer is interested in. A more likely
scenario is that several peers which are physically close (e.g.
machines in the same company site) share the burden of
storing some views which may be interesting to all of them.
All view definitions are then indexed in the DHT, so that any
peer may learn about them. A query posed on any peer is re-
written using the existing views. In this work, we focus on the
problem of finding equivalent query rewritings based on the
views in the DHT, as well as on building and advertising the
views.
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Fig. 1.

Architecture overview.

This paper makes the following original contributions.
(1) We describe the VIP2P architecture for managing and
exploiting materialized XML views based on a DHT. (2) We
consider the problem of tree pattern query rewriting problem
based on multiple views. The sets of rewritings identified
by our and similar works [4], [9], [18] partially overlap;
we prove an interesting bound on the maximal rewriting
size, making it polynomial in the number of views, and we
study several corresponding rewriting algorithms. (3) We study
several strategies for indexing materialized view definitions on
a DHT, and compare their usefulness. (4) We demonstrate via
experiments in a fully implemented platform the scalability of
our platform.

The architecture we envision is depicted in Figure 1. Network
peers labeled p; to pg store documents, shown as triangles,
and/or views, shown as tables. Such tables attributes may be
of type zml (whose values are serialized XML subtrees), in
the style of the native XML data type in SQL/XML 2003. Such
attributes are shown as triangles inside tuples. We designate
a document d or view v at peer p by the notation dQp,
respectively, v@p.

Each view is defined by a tree pattern, and this pattern (not
the view extent) is indexed in the DHT. Query processing
can be traced following the numbered arrows in the Figure.
Assume query ¢ is asked at peer psg (step 1). Then, pg will
perform a DHT look-up to find which view definitions may
be useful to rewrite the query. For instance, p, and ps; may
return to pg relevant view definitions (step 2). Peer pg will
then run a view-based query rewriting algorithm, trying to
reformulate ¢ based on these definitions (step 3). A query
rewriting is a logical algebraic plan based on some views,
in our example, v1@ps, v2@ps, and v3@pg. After picking a



rewriting, pg transforms it into a distributed physical plan,
which runs in a distributed fashion (step 4, thick arrows denote
data transfer). In our example, vs is sent to pg which joins it
with v3 and sends the result to pg. At pg it joins with v; which
is sent from ps.

Each ViP2P view v is complete, i.e. it includes v(d) for any
document d in the network (modulo some update propagation
time). To obtain such views, whenever a new document, say
d1@Qp; in Figure 1, is published, the publishing peer performs
another type of lookup (step 5) to determine (possibly a
superset of) the view definitions to which the new document
may contribute tuples. In the Figure 1, such definitions are
returned by ps, and p; finds out that d; contributes some tuples
to the view v4@pg. The tuples are sent to pg (step 6), which
adds them to the view extent.

This article is organized as follows. Our pattern language
is discussed in Section II. Section III presents the rewriting
problem and its complexity, and Section IV studies several
rewriting algorithms. How views are materialized, indexed in
the P2P network, and looked up is discussed in Section V. We
present our experiments in Section VI, discuss related works
in Section VII, then conclude.

II. PATTERNS

We will rely on a tree pattern dialect P, defined as follows.
(1) Pattern nodes can correspond to XML internal nodes
(elements or attributes), or to leaves (words in text occurring
inside XML elements, or in attribute values). For presenta-
tion purposes, we do not distinguish between elements and
attributes. We extend the XPath descendant axis to consider
that words are children of their closest element or attribute
ancestors. Each internal pattern node carries a label from a
tag alphabet A; = {a, b, ¢, ...}. Each leaf node carries a label
from a word alphabet A,, = {a,b,c...}.

(2) Pattern edges correspond to parent-child or ancestor-
descendant relationships between nodes.

(3) Each pattern node may be annotated with some stored
attributes, describing some information items that the pattern
stores out of each XML node matching the pattern node. The
cont annotation indicates that the full (serialized) image each
matching XML tree node is stored. The id annotation indicates
that a node identifier, which uniquely identifies the node (and
the document it belongs to). Moreover, we assume structural
IDs, i.e. such that one may decide, by comparing the identifiers
of two nodes n1 and no, whether n; is an ancestor/parent of no
or not. Many variants of structural identifiers exist, e.g., [2],
[12], [20], some of which provide further information, e.g.
allow identifying the least common ancestor of two nodes etc.
For the purpose of this work, we only require that parent-child
and ancestor-descendant relationships can be determined from
the node IDs. Finally, the val labels stands for the node’s text
value, obtained by concatenating all its text descendants in
document order.

(5) Each node may be annotated with a predicate of the form
[val = ¢] where ¢ € A,, restricting the XML nodes which
match the pattern node, to those satisfying the predicate.

Notations and syntax simplification We say a pattern node
has an id, respectively val, cont, or value predicate, if the
node is decorated with such an index.

For simplification, in the sequel, we only consider ancestor-
descendant node relationships. All the results we present hold
in the presence of both ancestor-descendant and parent-child
relationships; the distinctions to be made are quite well-known
by now, e.g. when computing pattern embeddings [3], or
structural joins [2].

We introduce a simple text syntax for patterns. We denote

nodes by their A; or A, label. The possible id, val and
cont labels, and predicates over wval, are shown as indices
to the node. For instance, a;q.on: 1S a pattern storing the
structural IDs and the content of all a elements. We use
parenthesis to show the nesting of children inside parents,
and commas to separate the children of the same pattern
node among themselves. For instance, a(b(c;q4)) stores the IDs
of elements found on some path matching //a//b//c. The
pattern af,qi—s](b, ciqa) stores the identifiers of all ¢ elements
having an a ancestor of value 5, and whose serialized XML
subtree contains the word b.
Pattern semantics Let p be a pattern and d be an XML
document. As customary, an embedding ¢ : p — d of p in
d is a function associating d nodes to p nodes, preserving
node labels and ancestor-descendant relationships [3]. The
result of evaluating p on d, denoted p(d), is the list of tuples
obtained by lining together in a tuple, all IDs and/or values
and/or serialized content, for each embedding of p in d.
Assuming a total order over the nodes of p (top-down, left-
to-right traversal), the tuple order in p(d) is dictated by the
lexicographic order over the d nodes which are targets of the
embeddings. For a document set D, the semantics of p over D
is defined as the concatenation (in the order of the document
IDs) of all p(d), d € D.

We use a.id (respectively, a.val, a.cont) to denote the
corresponding attribute in p(D).

We say two patterns pp,pe are equivalent, denoted p; =
pe, if for any database D, p1(D) = pa(D). We establish
containment and equivalence of P patterns in time polynomial
in the size of the patterns [3].

III. ALGEBRAIC REWRITINGS USING PATTERNS

Given a query ¢ € P and a set V of views, we are
interested in the rewritings of g, based on V. As explained
in Section II, the semantics of both queries and views are
relations, therefore, we investigate rewritings which combine
views by means of a relational algebra, specified in Section III-
A. Based on this, Section III-B formally states the rewriting
problem, while Section III-C show that its complexity is
polynomial in the number of views.

A. Algebra

The algebra we consider consists of the following operators:
(1) scan(v) (or v, in short), where v € V is a view.
(2) The n-ary cartesian product operator X, projection (de-
noted 7..5), duplicate elimination (denoted 7°), and sort
(denoted S¢o5)-



(3) Selection, denoted op,.q. Here, pred is a conjunction of
predicates of the form ¢ © c or ¢ © j, where 7, j are attribute
names, ¢ € A, and ® € {=, <} is a binary operator. We use
< to designate the “is ancestor of” predicate. Thus, assuming
the attributes named ¢ and j contain IDs, o;<;(op) returns
those op tuples where the identifier in attribute ¢ corresponds
to an ancestor of the node whose identifier is in attribute j.

Note that the presence of x and o allows, in particular, ID
equality joins ><—, as well as structural joins [2], denoted <.
(4) A navigation operator, designated nav; ,,, which takes
as input one algebraic expression. The attribute ¢ in the input
must correspond to a cont attribute, and np is a pattern whose
nodes must not have ids. Let ¢ be an input tuple to the nav,
and np(t.i) denote the result of evaluating the pattern np on
the XML fragment stored in t.¢ (as defined in Section II).
Then, nav; ,, will output the tuples ¢ x np(t.i), i.e., obtained
by successively appending to ¢ each of the tuples in np(t.i). If
np(t.i) is empty, nav; »p acts like a selection, erasing ¢. The
reason why np nodes must not have ids is that it is generally
not possible to determine the ID of a node, from an XML
fragment (not the whole document) to which the node belongs.

As an example, let v be the view a;q cont- The expression
€ = NAY . cont,b(coont,deon) (V) TELUNS tuples with 4 attributes:
a identifiers, a contents, and contents of ¢ and d descendants
of a, having a common b ancestor below a.

For convenience, we extend the notation to allow sev-
eral patterns to be applied on the same cont attribute
by a single nav operator. Thus, nav; pp, np,(0p) =
NV s (M1, (0D))-

B. Problem statement

Equivalent rewritings Let ¢ be a P query, and
e(v1,va,...,v;) be an algebraic expression over the views
in V. We say e(V) is an equivalent rewriting of ¢ if and only
if, for any database D, e(v1(D), v2(D),...,v(D)) = q(D).

As an example, the expression e from the last exam-
ple above is an equivalent rewriting for the query ¢ =
QAid,cont (b(cconta dcmz,t))~

Problem statement (first attempt) We may at this point
specify our problem as: given ¢ and V), find all equivalent
rewritings of ¢ using the views V. Here and in the sequel, we
assume the views and the query have been minimized as in [3]
(a difference to be made for our patterns with attributes is: no
node having id, cont or val can be removed by minimization).

However, this problem definition leads to an artificially large
space of solutions, since two algebraic expressions may differ
in their view join orders, selection and projection positions
etc., all the while corresponding to the same rewriting. For
instance, let ¢ = a;q(b,c,d) and vy = a;q(b), ve = a;q(c),
vy = a;q(d). Twelve syntactically different join expressions
over vy, v. and vy are equivalent rewritings of q. We are not
interested in exploring these alternatives during rewriting, as
this exploration pertains to the subsequent algebraic optimiza-
tion step. To that effect, we introduce the notion of canonical
algebraic expressions. An algebraic expression e is said to be
canonical if it has one of the following forms:

e form 1: scan(v) or nav(scan(v))

I
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Fig. 2. Sample query, views, and rewriting.

o form 2: x(ay,...,ax), where each «; is of form 1
o form 3: opreq(5), where ( is of form 1 or 2

o form 4: s.45(7y), where v is of form 1, 2 or 3

o form 5: 7.45(0), where ¢ is of form 1, 2, 3 or 4

o form 6: wo(e), where ¢ is of form 1, 2, 3, 4 or 5.

Intuitively, the operators in canonical expressions are
(1) consolidated - there will be at most one of each of the
following operators: cartesian product, selection (possibly on
a conjunction of predicates), sort, projection, and duplicate
elimination and (2) applied in a specific order (scan, then
nav, then x, o, s, © and 7° respectively).

Any algebraic expression can be brought to a canonical

form. We say e is a canonical rewriting of q if e is a rewriting
of ¢, and e is a canonical expression.
Minimal rewritings Certain canonical rewritings exhibit
some redundancy, as illustrated by the query ¢ = a;q and
identical views v = v’ = a;q. Then, e; = v and ey = v’
are canonical rewritings, but so is e3 = m;q(0ig=ia(v X V')).
Intuitively, we are interested in finding e; and es, but not
e3. More formally, let e be an algebraic expression. We say
e is minimal if and only if all the expressions obtained by
removing a view from e are not equivalent to e. Several
minimal canonical rewritings can be obtained from a non-
minimal one, as shown in the last example above.

View pruning If v appears in a rewriting of ¢, then there
exists an embedding ¢ : v — ¢, such that:

1) ¢ preserves node names

2) if n is a parent of m in v, ¢(n) is an ancestor of ¢(m)

3) if m has a value predicate [val = ¢1] in ¢ and ¢(n) =

m, for some v node m, then m must not have a value
predicate [val = ¢s3), if ¢1 # co.

A similar observation has been made in [18] (excluding
item 3 above). This observation allows pruning down the set
of views V) to a subset U/ of views which can be embedded in
g, while being guaranteed not to lose any rewritings by doing
SO.

View expansion An important refinement of our problem
is needed. From the cont attribute of a view node, one
may extract the value of this node’s val attribute (e.g. by
the XPath query ./text()), as well as information about its
descendants, since they appear in the cont XML subtree.
For instance, in Figure 2, one can expand v; by navigating
within b.cont to find its text value, and the text values of all
its e descendants. This is represented by the algebraic plan
NAV b cont, a1 (evar) V1), Where by a slight abuse of syntax,



we denoted by .,,; a pattern node matching only the root
of the XML tree on which it is evaluated, and having a
val attribute. The result can be seen as an expanded view
v} = bidval,cont(€val). The algebraic expression at right in
Figure 2 builds on this plan, and is a canonical minimal
rewriting for the query.

The need for partial expansions Observe that an expanded
view does not necessarily add under the view node having
cont, all the forest rooted at the corresponding query node.
In the above example, expansion added an e node but not
a ¢ node. Indeed, had we added the ¢ node too, it would
have been impossible to rewrite g. Let us see why. Assume
expansion transforms vy into v{ = biq.vai,cont (Ccont, €val)- We
may join v] with vy enforcing that a.id is an ancestor of
b.id and b.id is an ancestor of c.id (the latter from v5). The
resulting expression has two ¢ nodes, descendants of b: the
one from v} has cont, while the other has id and cont. As
a result, this expression contains a cartesian product of the
//b//c nodes with themselves, which was not required by the
query. We cannot unify the two ¢ nodes, as the one from the
expanded view v} does not have id. Thus, it is impossible to
rewrite ¢ based on v{’; v| is necessary. This phenomenon is
due to the fact that unlike XPath views used e.g. in [18], our
views may store data from more than one nodes.

We consider the views in U have all been expanded into a
set W, and reason on ¥ from now on.
Problem statement (final) Our problem can be now stated
as follows: given a query ¢ and a set of views V, find all
minimal canonical rewritings of ¢ using views from the set
W, obtained by pruning, and then expanding, V.

C. Complexity
Several aspects impact rewriting complexity.

View pruning is performed by evaluating each view on the
query, considered as a data tree; if the result is non-empty, an
embedding has been found, and the view is kept. Thus, the
cost of obtaining the set U from V is O(|g| X Zyev|v|).

All views which survive pruning have at most as many
nodes as the query (recall also that they are minimized from
the start). Thus, for any v € U, |v| < |g|-

Expansion impact We consider the size of the set W obtained
by expanding U/ views.

Let v be a view in U, where a single node m has a cont.
Assume an embedding ¢ maps m to the query node n. In
principle, we should generate 2!l — 1 copies of v (where |n|
is the size of the query tree rooted at n), each of which copies
as a new child of m, a subtree of the n-rooted query tree.
If a node in this subtree has an id, the id will be erased in
the copy, since as said in Section III-A, IDs cannot be found
inside cont attributes.

Three observations allow to reduce this set (see Figure 3):
1. Let n; be a descendant of n, and ns be a child of n;. Let
v’ be an expansion of v, in which n; is copied as n}, whereas
ng is not copied. To build a rewriting based on v’, we would
need some other view v, covering node n, and a predicate of
the form nf.id < n.id enforcing the appropriate relationship
between the two nodes. However, n} lacks an ID, thus this

predicate cannot be checked, and v’ is useless. Thus, we only
develop the expanded views such that: if a descendant n; of
n is copied, so are its children, but also their children etc. -
thus, the full subtree rooted at n; must be copied.
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2. Again, let n; be a descendant of n, and ns a child of
ny. This time, we consider an expanded view u’ where nq
is copied as nj, and n; is not copied. To build a rewriting
based on v/, we would need another view covering n;, and a
predicate of the form n;.id < n).id enforcing the appropriate
relationship among the two nodes. Again, this predicate cannot
be checked since n) lacks an ID. Therefore, if we copy no,
all its ancestors up to n must be copied.

3. In the case when m does not have an id, let n; be a
descendant of the query node n, and w’ be an expanded view
such that n; is not copied in w. By a similar argument as
above, a rewriting based on w’ needs another view covering
node nj, and a predicate over n;.id ensuring that it is a
descendant of m’s copy in w’. Since the latter node does not
have an ID in v nor w’, no rewriting can use w’.

Observations 1. and 2. entail that we only need to enumerate
the subsets of n children, and for each subset, build an
expanded pattern which fully copies the subtrees rooted in
those children. This reduces the number of generated expanded
views from 2"l to 2/(") (where f(n) is the fan-out of n),
which is often smaller. Observation 3. further reduces it to 1
in the particular case where m does not have an ID.

More generally, let f(q) be the maximum fan-out of a
cont node in ¢, f(g) < |q|. Let v; be a view whose nodes
ml,m2,...,m" have cont, k; < lvil < lq|, and ¢; an
embedding from v; to ¢ such that ¢;(m]) =n;, 1 < j < k;.
The expansion of v; produces IT;—; ., (2f("i)) views, which
is bounded by IT;_; _;,2f(@ < 2lalxf(@),

Thus, W] < [V] x 2l2x7(@) < |p] x 2lal”,

Rewritings and covers Let e be a canonical rewriting based
on some a subset V' of W. Clearly, the set of ¢ nodes can
be seen as covered by the union of the node sets of the view
involved in e. Thus, from a rewriting, one can extract a query
cover based on the view nodes.

Not any query cover leads to a rewriting. For instance,
consider the views vy = a;q(b) and vy = ¢4, and the query
g1 = a;q(b(c)). In this case, the query requires the b node
to be an ancestor of the ¢ node, but since v; does not store
identifiers for b, we are unable to enforce this constraint.

A cover may use a view several times, and in distinct
positions. Consider, for instance, go = a(a;q), and the views
V3 = U4 = a;q; g2 may be covered (and rewritten) by using:
vy twice, or v3 twice, or v3 in the ancestor role and v4 in the
descendant role, or the opposite.

More generally, fo each set of pairs of the form (view from
W, embedding from the view to the query), where distinct
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Fig. 4. Sample query, views, and DAGs.

pairs may use the same view with different embeddings, cor-
responds at most one rewriting. We will describe an algorithm
which builds this rewriting when possible in Section IV; the
algorithm runs in quadratic time in the combined size of the
views.

How many different embeddings exist from a view to the
query? If all query nodes have different labels, then this also
holds for each view, and at most one embedding exists. In
general, let v(q) be the maximum number of times a given
node label appears in the query. Then, the view can be
embedded in at most v(q)*! < v(g)l9 ways.

Rewriting size bound As we will show in Section IV, the
maximum number of views involved in a minimal canonical
rewriting is equal to the number of query nodes.

Putting it all together, the worst-case complexity for enu-
merating all minimal canonical rewritings is of the form
gl x (Bvev|v]) + (Zk=1,... \q\qw\xy(q)\q\) X (Zpew|v])?.
The first term accounts for pruning. The second is the cost
of enumerating all subsets of (view from )}V, embedding)
pairs, of size at most |q| (by a known formula, this is in
O((IW| x v(g)l7hlal /|q|!)), multiplied by the quadratic cost of
building a rewriting out of such a set. More simply, the sum of
the combinations can be put as O(|W|l?l) which translates to
O([V]!9l). The last factor (Z,eyy|v|)? is less than (W] x|q|)?,
thus in O(|V|)2. Thus, the total cost is in O(|V|)!4/*2. This is
significantly less than the O(2/Y!) which can be attained with
a naive set-cover approach.

IV. REWRITING-BASED QUERY ANSWERING

In this section, we describe how queries can be answered
in our architecture, based on materialized tree pattern views.
Section IV-A discusses if and how an algebraic rewriting
can be built out of a set of views. Section IV-B discusses
algorithms for enumerating all minimal canonical rewritings.
Section IV-C outlines the optimization and execution of our
rewriting plans.

A. Building a rewriting out of a set of views

As we have seen, rewritings can be obtained out of some,
but not all, covers of the query using the views. We present an
algorithm (Algorithm 1) which, given the query, a subset of
views in W, and embeddings from each view into the query,
builds a particular algebraic expression over all the views, or
fails. In particular, if the views constitute a node cover, and if

Algorithm 1: Views-to-rewriting (possibly partial)
Input : query ¢, views vy,...,vx € W,
embeddings ¢; : v; — ¢, 1 <i <k
Output: partial rewriting of ¢ using vy, ...,
exists
e — x(v1,va,...,0k)
foreach guery node n do
S(n) < {n; € v; such that ¢;(n;) = n and n; has an
)
pred < true
foreach guery node n do
pred — pred N\, ,, cs(n)(ni-id = n;.id)
foreach m child of n do
L pred «— pred/\/\n,-eS(n),mjeS(m) (n;.id < m;.id)

vk, if one

WO -

®w N s

9 € Opred(€);

10 d — DAG(e); d «— minimize(d)

11 if d is not a tree, or d cannot be embedded in q then
12 | fail

13 attemptFinalize(e, q)

14 return e

an expression is returned, it will be a canonical rewriting of
q, using all the views. This rewriting is not guaranteed to be
minimal; we will address minimality further on.

Algorithm 1 starts by building the cartesian product of the
views. Then, it adds a selection on two kinds of predicates
(lines 2-9). First, all the view nodes having an id, and embed-
ded in the same query node, must be equal. Second, structural
relationships between query nodes should be enforced over
the corresponding view nodes. As an example, consider the
query gs and the views vy and vs in Figure 4. They leads to
the expression €1 = Oc.id=c.id A c.id<d.id A d.id<f.id(Va X Vs),
where in the second predicate, ¢ is from v5 and d is from vy.
Observe that no predicate connects the b nodes, since they do
not have ids.

At line 10 in Algorithm 1, we examine the resulting
expression by means of a DAG representation, built as follows.
Take all the v; trees, and fuse all view nodes mapped to a same
query node, into one node. (The result is guaranteed to be a
DAG, since the embeddings ¢; map the v; trees to q.) We
then minimize the DAG, by removing all redundant nodes,
and redundant edges. A node is redundant if it has no id,
val or cont attribute, and is not the only one mapped to its
corresponding query node. An edge is redundant if there exists
a path in the DAG connecting the same nodes. In the example
of Figure 4, DAG; is the DAG obtained from e;; the nodes
and edge on gray background are eliminated by minimization.

The function attemptFinalize attempts to build a ¢ rewrit-
ing out of e. It first tests if an embedding from ¢ to d can
be found; if yes, this also implies that the views form a query
cover. If so, it will attempt to add the value selection predicates
from ¢ that e does not have, a sort, a projection, and/or a
duplicate elimination on top of e. The sort addition is a bit
complex, since the order in which e produces results depends



on the physical operators implementing it, and these operators
are not known at this point. Thus, we check (a) if the existing
view orders allow producing e outputs in the right order for ¢
by some possible physical implementation of e, or (b) if not,
if e projects sufficiently many IDs to enable sorting e’s output
as desired. If some of the desired operations cannot be added,
attemptFinalize fails. In the example in Figure 4, the canonical
rewriting found i8 7q ;q, f.iqa(€1)-

Correctness Algorithm 1 is correct, i.e. if attemptFinalize
produces an output and flags it as a complete rewriting (line
13), that is indeed canonical rewriting of g. This is guaranteed
by the fact that e is equivalent to d (and the minimized d).
If the minimized d is isomorphic to ¢, and the necessary
selection, projection and sort operations could be applied on
its equivalent expression e, then the result is an equivalent
rewriting of q.

Completeness If a canonical rewriting based on a set of
views and embeddings exists, Algorithm 1 produces it. This is
because of the aggressive application of node predicates (lines
5-8), enforcing as many of the query-derived relationships
between nodes as possible. Intuitively, omitting one of the
predicates may lead to an undesired cartesian product in e.
For instance, in Figure 4, if we omit the predicate c.id = c.id
from e;, we obtain the DAG» from the same Figure, which,
after minimization, is not a tree. If we omit the predicate
d.id < f.id, we obtain the DAG3 in Figure 4, which, after
minimization, is a tree, but attemptFinalize cannot turn it into
a rewriting, since f is not a descendant of d.

Complexity Algorithm 1 runs in quadratic time in the com-
bined size of the views; the most expensive operation is the
DAG minimization.

Bound on minimal rewriting size We now prove that a
minimal canonical rewriting of ¢ uses at most |g| views.

We start by proving the following lemma: for any query
node n, there must exist at least a view node m,; of a view
v; used in the rewriting, such that ¢;(m;) = n and m; has at
least as many attributes as n. We distinguish possible cases
by the number of attributes that n has:

o No attributes: the fact that at least one view v; must have

a node m; mapping to n satisfies our claim.

¢ One attribute: the rewriting must provide it, so at least

one of the m; nodes mapped to n must have it.

« Two attributes: consider first the case when one attribute

is an id. Either m; is the only view node mapped to n
(in which case m; must also provide the other attribute),
or there are several view nodes mapped to n. Among
these, some may have no attributes at all, but those
which do have attributes must all have ids, to enable
the corresponding view join'. Among these joined views,
having m; nodes with ids such that ¢;(m;) = n, one at
least must also provide the other attribute of n.

Now consider the case when n has val and cont. Simi-
larly, either m; is the only view node mapped to n, thus it
provides both; or, the rewriting joins several views by the

IOtherwise, undesirable cartesian products (recall Partial Rewritings from
Section III-B) or, equivalently, non-tree DAGs (such as DAGs2 in Figure 4)
may occur, and prevent rewriting.

Algorithm 2: Subset-enum

Input : query ¢, view set V
Qutput: all minimal canonical rewritings of g based
on V
1 U — prune(V, q); W « Uyey expand(v)
2 R0
3 foreach gc = {vy, v, ..
do

., Ut subset of W,

qc| < [q|

4 foreach tuple ¢1, po, ... ¢ of embeddings from
V1,V2, ...,V into ¢ do
5 e < views-to-rewriting(qc, ¢1, ¢2, . . . ¢x) (use
Algorithm 1)
6 if e is an equivalent rewriting then
7 | addeto R

8 remove from R non-minimal rewritings
9 return R

equality of their nodes mapped to n. Among these nodes,
some must have cont, and those who do, also have val
due to expansion (Section III-B).

« Finally, if n has ¢d, val and cont, either m; is the only
view node maped to n and it has these attributes, or
several views are joined on ids of nodes mapped to n.
The first one to have cont, also has val, due to expansion.

Let v1,...,v; be an ordering over the views in the rewrit-
ing. Based on the lemma, we define the contribution of v;,
denoted C'(v;), as the set of query nodes n, such that (a) a
node of v; is mapped to n and has at least all the attributes of
n, and (b) no view appearing before i in the rewriting satisfies
this, i.e., for all j < 1, either v; does not have a node mapped
to n, or that node does not have all the attributes of n.

It is easy to see that for two distinct views v;, v;, the sets
C(v;) and C(v;) are disjoint.

A view v; such that C'(v;) = 0 is redundant. This is because
any node relationship, or attribute, which v; brings to the
rewriting, can also be found using the previous views. Thus,
for v; not to be redundant, |C'(v;)| must be at least 1.

Finally, the union of the C(v;) sets, for all views v;, is the
set of the query nodes. Thus, at most |g| views participate to
a minimal rewriting. [J

For example, consider the rewriting of g3 based on v4 and
vs discussed above. In this case, C(v4) = {a,b,c,d}, and
C(vs) = {f}. This rewriting is minimal. Now assume that
we also add the view vg from the Figure to the rewriting,
before vy and vs. Then, C(vg) = {c, f}, C(vs) = {a,b,d},
C(vs) = 0 and vy is redundant.

DAG vs. rewriting minimality Algorithm 1 minimizes the
DAG d, not the rewriting e. Using the C' sets, one can extract
from a non-minimal rewriting e some minimal one, in time
polynomial in |g].

B. Rewriting algorithms

The first end-to-end rewriting algorithm we consider is
called Subset-Enumeration, or SE in short (Algorithm 2). It



iterates over all W subsets of size at most |g|, all embedding
combinations from the views into ¢, and accumulates rewrit-
ings in the set R. A rewriting r is non-minimal if another
rewriting ' € R uses a subset of 7’s views.

Algorithm SE does not specify a subset enumeration order;
thus, in the worst case, all rewritings are enumerated before a
minimal one is returned. A simple improvement is Increasing-
Subset-Enumeration, or ISE, which builds WV subsets from
the smallest to the largest. Using a proper trie structure for
R, one can efficiently check if a subset of the views used in
a rewriting has already lead to another rewriting, and if so,
discard the larger one.

Algorithm ISE repeats a lot of work. For example, let v; be
the view b, and vg be the view b,,,. They cannot be joined
on b, and any W subset including them both will not lead
to a rewriting. However, Algorithm ISE will try such subsets.
Similarly, if vg and v1¢ can be joined, then this partial result
could be stored to be re-used in several larger rewritings.

Based in this intuition, we devise a bottom-up, Dynamic
Programming Rewriting algorithm (or DPR, in short). It
attempts to build larger and larger partial rewritings, by
combining smaller ones. The initial set of rewritings is made
of the pairs of (JV view, embedding in the query). Then, DPR
combines an existing rewriting, and a rewriting made of only
one view, akin to building left-deep plans during optimization.
However, unlike an optimizer, DPR only explores one ordering
per sets of views, exactly to avoid doing the optimizer’s work.
To combine two partial rewritings, namely e; over the set of
views V7 and set of embeddings ®1, and es similarly based on
V5 and &5, DPR invokes Algorithm 1 on V3 UV, and @1 U ®s.
Coming back to the above examples, DPR will observe that
v7 and vg cannot be combined, and not attempt a rewriting
combination if {v7,vs} is a subset of V4 U V5. The partial
rewriting joining vg and v;g, returned by Algorithm 1, will be
used to build larger rewritings using one extra view. This give
DPR a significant reduction of work over ISE.

Algorithm DPR will identify a rewriting of k& views only
after having tried all rewritings using up to £ —1 views, which
may take too long.

To alleviate this, we propose the Depth-First Rewriting
algorithm (or DFR, in short). Like DPR, it is bottom-up, and it
builds only minimal, left-deep rewritings. However, instead of
exploring all combinations of increasingly many views, DFR
is a greedy algorithm. At any moment, it picks the partial
rewriting covering the most query nodes found so far, and
joins it with a 1-view partial rewriting. This leads DFR to
frequently finding a first rewriting very fast. In exchange,
when DFR tries a set V' of views, its subsets may have not
been previously explored. For instance, it may explore {v7, vs}
after {v7,vs,v12} and after {v7,vs,v13}, thus discover the
incompatibility of v; with vg several times.

ISE, DPR and DFR are correct and complete; they produce
the minimal rewritings of ¢ given V. ISE and DPR produce
the rewritings having the fewest number of views possible,
before the others. ISE and to a lesser extent DFR may repeat
some work. ISE and DPR produce rewritings towards the end
of the search, whereas DFR may produce some very early on.

C. Evaluating a rewriting

A logical rewriting plan must be optimized by standard
algebraic transformations, e.g. transforming the o(x) into a
join tree, pushing o and 7 etc., and then trasformed into a
physical plan. In ViP2P, this plan is typically distributed over
the peers in the DHT. The execution engine includes standard
implementations for scan, o, m, hash joins, binary structural
joins [2] and a holistic twic structural join [8]. In the view
definition index, we annotate the view tree pattern with its
cardinality (known at the view peer), allowing the optimizer
to decide about join orders. The optimizer applies heuristics
to reduce, first, inter-site transfers, and second, the number of
sort operations.

V. P2P VIEW MANAGEMENT

We have so far explained how to exploit views for query
rewriting. We now consider how views are materialized (Sec-
tion V-A), and identified in order to rewrite a query (Section V-
B) in the DHT network. Both operations require some view
definition indexing in the DHT. We stress that we do not index
view extent (tuples), but only the pattern defining the views.

We start by introducing a useful term: if d is a document
and v is a view such that v(d) # (), we say d affects v.

A. View materialization

Assume peer p decides to establish a view v. Then, when a
peer pg publishes a document d affecting v, pg needs to find
out that v exists. To that effect, view definitions are indexed for
document-driven lookup as follows. For any label (node name
or word) appearing in the definition of the views vy, va, ..., vk,
the DHT will contain a pair where the key is the label, and
the value is the set of view URLS vy, v, ..., vk.

When a peer p; publishes a document d, p; performs a
lookup with all d labels (node names or words) to find a
superset S, of the views that d might affect. Then, p, evaluates
v(d) for each v € S,. We implemented this step based on
a SAX traversal, with time complexity in O(|d| x |v]). In
practice, large fragments of d are typically not interesting for
a given view v, thus computing v(d) tends to spend some time
traversing useless parts of d. To share this cost, we group view
definitions in batches of some size n (we set n = 10) and
evaluate all the views of a batch in a single d traversal. Thus,
d fragments useless to all the views in a batch, are parsed only
once per batch.

Finally, pg sends, for each view v, the tuple set v(d) (if it is
not empty) to the peer p, publishing v. Recall from Section II
that element IDs include document URIs, which may get rather
lengthy. To speed up transfers, tuples are encoded so that the
URI of d is sent only once for the tuple set v(d).

We have so far considered that v is published before the
documents which affect it. The opposite may also happen, i.e.
when v is published, a document d affecting v may already
exist, and v(d) needs to be added to v’s extent. To that effect,
we require the publisher p; of a document d to periodically
look up the set of views potentially affected by d, and send
v(d) to those views as described above. Thus, v will be up to
date (reflecting all network documents that affect it) after the



periodical check and subsequent actions have been performed
by all document publishing peers.

We end the section by considering view maintenance in the
face of document deletion or change. When documents are
deleted from the system, a similar view lookup is performed,
and the peers holding the views are notified to remove the
respective data. We model document changes as deletions
followed by insertions.

B. Identifying views for rewriting

A second form of view definition indexing is performed in
order to find views that may be helpful for rewriting a given
query. In this context, a given algorithm for extracting (key,
value) pairs out of a view definition is termed a view indexing
strategy. For each such strategy, a view lookup method is
needed, in order to identify, given a query g, (a superset of) the
views which could be used to rewrite q. Many strategies can be
devised. We present four that we have implemented, together
with the space complexity of the view indexing strategy, and
the number of lookups required by the view lookup method.
We also briefly show that these strategies are complete, i.e.
they retrieve at least all the views that could be embedded in
q and, thus, lead to g rewritings.

Label indexing (LI): index v by each v node label (either
some element or attribute name, or word). The number of
(key, value) pairs thus obtained is in O(|v|).

View lookup for LI: look up by all node labels of q. The
number of lookups is ©(|q|).

LI completeness is quite straightforward (details omitted).
The LI strategy coincides with the view definition indexing for
document-driven lookup (described in the previous section).
An interesting variant can furthermore be devised:

Return label indexing (RLI): we index v by the labels of all
v nodes which project some attributes (at most |v|).

View lookup for RLI, interestingly, is the same as for LI.
The labels on which LI indexes v, and RLI doesn’t, are those
of v nodes without attributes. On such nodes, no join can
be applied on v (due to the lack of id), and no navigation
(due to the lack of cont). Moreover, such nodes obviously do
not provide attributes corresponding to those returned by the
query. Therefore, one does not need to advertise v based on
their labels.

The drawback of LI and RLI is their lack of precision.
For instance, a view a;4(c;q) will be retrieved for all queries
involving the terms a, although it is useless for all queries not
containing c. A more precise strategy is the following.

Leaf path indexing (LPI): let LP(v) be the set of all the
distinct root-to-leaf label paths of v. In this context, a path
is just a sequence of the node names, it does not include
the edges. Index v using each element of LP(v) as key. The
number of (key, value) pairs thus obtained is in ©(|LP(v)]).
View lookup for LPI: let LP(q) be the set of all the distinct
root-to-leaf label paths of ¢. Let SP(q) be the set of all non-
empty sub-paths of some path from LP(q), i.e., each path

from SP(q) is obtained by erasing some labels from a path
in LP(q). Use each element in SP(q) as lookup key.

As an example, let v = a;q(b;q, ¢;q), then v will be indexed
by the keys a.b and a.c. Let g be the query a(f(b;q, ¢;q)). With
LPI, the view lookups will be on a, a.f, a.b, a.c, f, f.b, f.c,
b, and c. Thus, v will (correctly) be identified as potentially
useful to rewrite ¢. Indeed, if a view v’ = f;4 exists, then
q= Ua<fAf<b/\f<c(U X U/)~

Let h(q) be the height of ¢ and [(q) be the number of leaves
in q. The number of lookups is bound by EpeLp(q)Q‘p‘ <
I(q) x 2",

LPI completeness: observe that if a view v can be embedded
in the query ¢, then LP(v) C SP(q).

The last strategy we consider is:

Return Path Indexing (RPI): let RP(v) be the set of all
rooted paths in v which end in a node that returns some
attribute. Index v using each element of LP(v) as key. The
number of (key,value) pairs is also in O(|RP(v)]).
View lookup for RPI coincides exactly with the lookup for
LPI. RPI completeness is shown similarly to RLI.

VI. PERFORMANCE EVALUATION

In this section, we present a set of experiments we made to
estimate the performance of various aspects of our architec-
ture. Section VI-A briefly describes our platform. Section VI-B
presents the experimental setup for the next two sections: Sec-
tion VI-C considers view materialization, while Section VI-D
studies query processing. Section VI-E studies view indexing
and lookup techniques, whereas Section VI-F focuses on query
rewriting on one peer. Section VI-G concludes our study.

A. System implementation and configuration

We have fully implemented the platform described so far,
using Java 6. Berkeley DB (version 3.3.75, available from
www.oracle.com) and FreePastry (version 2.1, available from
freepastry.org) are used for storing view data and indexing
view definitions respectively. For the implementation of the
nav operator, patterns are translated to XQueries, and executed
by the Saxon XQuery processor (version Saxon-B 9.1, avail-
able from saxon.sourceforge.net). The nav operator is always
placed on the same peer as its input, thus it is evaluated locally.

We have made some optimizations to speed up inter-peer
data transfers. More precisely, when sending a stream of
tuples, potentially including many document URIs in node
IDs, we encode the URIs on the fly in compact integers,
and send the dictionary with the tuples, so that they can be
decompressed on the other side.

In our experiments, unless otherwise specified, we have
deployed 1000 ViP2P peers on 250 machines on the Grid5K
research network (https://www.grid5000.fr). Each machine
hosts 4 peers. The machines are distributed across 9 big French
academic centers. They have between 2 GB and 4 GB of
memory; most of them are multi-cores. All run 64 bits Debian
Linux 2.6.18. Due to Grid5K restrictions, we could not reserve
the same sets of machines for all experiments. We ran most
experiments three times and averaged the times; the difference
between 2 runs was up to 20% of the values, but the general
tendencies were stable.
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B. Setup for view building and query processing

The peers publish a total of 2000 XMark benchmark
documents [15] of equal size; the total size of the network
documents varies across successive runs, from 400 MB to 3.2
GB. The peers also publish 500 views of up to 7 nodes. 70
views are affected by all documents; the others use XMark
node names but have no results on XMark documents. The
documents and views are split uniformly over the network.
The views are indexed using LI. All 500 views are retrieved
for all 2000 documents by the document-driven lookup method
described in Section V-A.

Once views are indexed, a designated coordinating peer
sends to all others a start signal. Then, in parallel, the peers
look up views, extract data, send and receive tuples, and store
them in their local BerkeleyDB databases. After all its tuples
are stored, each peer sends a done signal to the coordinating
peer. Of course, this synchronization is just for the experiment,
and is not needed otherwise.

C. View building

Figure 5 shows the total time needed to evaluate 500
views on the 2000 documents. Extraction takes place at the
documents’ sites. The times are summed up for all the peers;
in reality, extraction takes place in parallel. As expected from
the description in Section V-A, extraction time grows linearly
with the total document size.

Figure 6 shows the time measured at the coordinating peer,

between its start signal and the last of the 1000 end signals. It
can be seen as the time to load the network with our documents
and views, at the fastest possible pace. The time grows linearly
in the data size, as was to be hoped.
Data transfers for view materialization increased linearly in
the size of the documents. For the 3.2 GB of published data,
we transferred 468 MB of data for view materialization, after
URI compression.

D. Query evaluation

Once the views are loaded, we ask the query:
site;q(regions;q(africa;q(item;q)), catgraph;q(edge;q)).
Query rewriting & optimization at the query peer take,
respectively, 30 ms and 100 ms. The smallest rewriting uses
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two views on two machines, different from one where the
query is asked.

Query execution Figure 7 shows that as expected, query
execution time scales up with the size of the data set.

Data transfers for query processing also grew linearly with
the total document size, up to 12.57 MB for processing our
query on the 3.2 GB document set.

The benefits of VIP2P views can be appreciated on
the following simple example. We use a data set of 750
XMark [15] documents having the total size of 20 MB.
We use three different view sets to rewrite the query
site(item(descriptioncont)):

e Vi contains the view site.ont. This corresponds to
storing the full documents in one single view; we
use it to have a glimpse of the interest of document-
level granularity indices. Indeed, a system such as [11]
would identify all the corresponding documents and
then evaluate the query on the fly on those documents.
We proceed quite in the same way, by our rewriting
NAVsite oy item(descriptioncont) (vl ) .

e Vo contains three views: site;q, item;q and
description;q,cont- This corresponds to the node-
granularity indexing used in [1], but unlike [1], we also
time the transfer of the XML results to the query peer.

e V)3 contains one view which is exactly gq.

This experiment was made with 2 peers in a 10 GB
LAN, to minimize data transfer impact. The view lookup and
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rewriting times are negligible; the execution times are: 8.8
seconds for V;; 2.1 seconds for V,; and 1 second for V5. As
expected, having a view exactly matching the query is best.
This exemplifies the query speed-up that can be obtained using
views, if we pay the cost of building them.

E. View indexing and lookup strategies

In this section, we compare the view indexing and lookup
strategies LI, RLI, LPI and RPI described in Section V. We
consider a synthetic query g of 30 nodes labeled ay, ..., aso.
Each node of ¢ has between 0 and 2 children, and ¢’s height
is 5. From ¢, we create three variants:

e ¢ has the same labels as ¢, but totally disagrees with ¢
on the structure (whenever a; is an ancestor of a; in g,
this does not hold in ¢’)

e ¢" coincides with ¢ for half of the query (one child of the
root), while the other half conserves the corresponding ¢
labels but totally changes structure (as ¢’ does)

e ¢ has the same structure as ¢, half of it has the same
labels aq,...,a15, while the other half uses a different
set of tags by, ..., b5 (instead of ayg, .. ., asp).

From each of ¢, ¢/, ¢ and ¢’ we automatically generate 360
views of 2 to 5 nodes, for a total of 1440 views. The views
can all be embedded into the respective queries, i.e. those
generated from ¢ can be embedded in ¢, those generated from
q' can be embedded in ¢’ and so on. We, thus, obtain a mix
of views ressembling the query to various degrees. To this
randomly-generated view set, we added 3 hand-picked views
to ensure that one query rewriting exists.

We have indexed the resulting 1443 views in our network,
following the LI, RLI, LPI and RPI strategies described in
Section V. We then performed the four corresponding lookups.

Figure 8 shows how many views have been retrieved for
each strategy, compared with the number of useful views
(those that are found to be embeddable in ¢, in our example,
those generated from ¢, and possibly some generated from ¢”’
and ¢'""). We see that the path indexing-lookup strategies (LPI
and RPI) are more precise than label based ones (LI and RLI).
Moreover, LPI is the most precise. This is because LPI uses
longer paths as keys, thus, it describes views more precisely,
eliminating some false positives.

Figure 9 presents the number of (key, value) pairs added to
the index by each view indexing strategy, and the number of
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lookups needed by each strategy for the query we considered.
As expected, LI leads to most index pairs. With respect to
query-driven lookup, LI and RLI lead to 30 lookups, much
less than LPI and RPI lead to 370 lookups.

Figure 10 shows the time to obtain the initial set of views.
The Figure distinguishes the time to perform in parallel all
the lookup calls on Pastry, and the time to test if each view
is useful by embedding it into gq. The Figure shows that the
simple LI strategy is the best. Indeed, even though Pastry
lookups are asynchronous, issuing many lookups from the
same peer comes with a penalty, thus, LPI and RPI, which
needed 370 lookups, are significantly slower. LI makes up for
its low precision by requiring few lookups.

We mention that rewriting the query based on the relevant
views (282 in this example) takes around 6 seconds, whereas
finding the first solution takes around 0.5 seconds. Comparing
this with the times in Figure 10, one notices that view defini-
tion look-up is quite short, which validates the feasibility of
retrieving view definitions at query rewrite time. One may also
consider locally caching view definitions, to completely avoid
look-ups. The view pruning time could further be reduced as
we explain in Section VIL

E Query rewriting

We use queries of 5, 9, 13 and 17 nodes, respectively. Each
query is a balanced binary tree where all internal nodes have
two children. All nodes have different labels; the root has id,
the other nodes have no attributes. This experiment ran on a
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MacBookPro on the Darwin 9.6.0 kernel, and having a 2.5
GHz Intel Core 2 Duo processor.

First, for each query, we make a set of |¢| 1-node views, one
per query label, each having an id. This is a very hard case
for our bottom-up algorithms, as almost any subset of views
can be joined. The expected complexity here is O(|q|!71+?).

Second, we devise for each query another set of approx.
lg]/2 + 1 views. One of these views copies the top 2 levels
of the query nodes; the remainder ones are small subtrees of
1-3 nodes, made of the lowest levels in the query trees. In
these sets of views, only about half of the nodes have ids (we
took care that rewritings still exist). The complexity her is in
O((|q|/2)'91#2). Reducing id presence also reduces the join
opportunities and thus, simplifies the problem. In both cases,
all the views can be embedded in the query.

Figure 11 shows, for the first family of view sets (top) and
the second family (bottom) the total time, and the time to
the first rewriting, taken by ISE, DPR and DFR. The missing
points are times longer than 2 minutes. The highest times are
43 seconds for DFR-Total (at the top) and 27 seconds for
ISE-First (at the bottom). Recall that the complexity of the
problems we study is in O(|V|'5). Figure 11 shows, first, that
ISE does not scale; the total time is very large even for |¢| = 9
in the upper graph. Second, as expected, for DPR the total
time and the time to the first solutions almost coincide. Third,
DFR reaches a first solution much faster than the others; we
checked and these first rewritings were also of the minimal
size (although this cannot be guaranteed in general). Fourth,
DFR total time is indeed longer than DPR’s, due to the fact
that DFR may repeat some work since it does not explore
subsets the increasing order of their sizes.

Finally, we consider again the 17-nodes query and the
9 views used in lower part of Figure 11. We add a view
of 1 node, with the label of the query root, and having
cont. The query root has 2 children, thus, as explained in

Section III-B, expansion transforms this view into 4 views
(and not 2'7). Thus, rewriting proceeds with 13 views. Now,
the smallest rewriting uses just the fully expanded view; DFR,
DPR and ISE all find it in less than 100 ms. The total times
are respectively 5.8 seconds, 4.3 seconds, and more than 2
minutes.

G. Conclusions of the experiments

Our experiments show that the VIP2P approach for view
materialization and query processing scales up linearly in the
data size, on a network of 1000 peers. With respect to the
rewriting problem, when queries are complex and/or there
are many views, DFR tuned to stop after the first rewriting
gives reasonable performance. Rewriting time is also strongly
correlated to the number of ids in the views, since they enable
joins.

View indexing and lookup are relatively fast, which val-
idates the feasibility of exploiting views distributed over
the peer network. Among the view indexing strategies we
compared, LI cuts the most interesting compromise between
precision, number of entries in the DHT index, and number
of lookups needed for a given query to rewrite.

On one simple example, we have demonstrated the potential
for performance improvement provided by VIP2P views, over
DHT indexes either at document granularity level, or at node
level. This demonstrates that there exists a large in-between
space, where views closely suited to application needs can
provide significant performance benefits.

VII. RELATED WORKS

Our work is related to view-based XML query rewriting
using, and to distributed XML data management.

Tree pattern query rewriting Rewriting an XPath query
based on an XPath view has been studied in [6], [21]. More
recent works have considered rewriting XPath queries using
multiple views. View intersection is used to build rewritings
in [9], and the DAGs we use in Section IV-A recall their
study, since ID equality join is akin to intersection. Our
rewriting problem is complicated by the fact that our views
have multiple attributes at various places in the view. Thus, we
need joins, and we need to take into account how many times
a tuple is multiplied by each extra join (as in the discussion
around expansion and Figure 2). Also, we assume structural
ids, which enable e.g. rewriting a(b.ont) out of a;q and
bid,cont, Which [9] does not handle. The recent work of [18]
takes structural ids a step further. They use XPath views
(including wildcard nodes labeled *) where the return node
always has cont and a powerful structural ¢d, encapsulating
the ¢ds and labels of all its ancestors, up to the root. Thus,
unlike us and [9], they may rewrite a(beont) USing big cont.
simply by checking the b.id for an a-labeled ancestor. We
chose not to adopt such ids since they are rather lengthy,
and their encoding relies on an NFA [12]. In our context,
querying many documents, each of which would need an NFA,
would significantly increase node id size, and thus, potentially
data transfers. Rewriting is reduced in [18] to finding covers



of the query leaves. Our rewritings need to cover the whole
query, but we have proved in Section IV-A a |g| bound on the
rewriting size, and polynomial complexity for the rewriting.
In contrast, in [18] the rewriting size bound is |V| and the
complexity is exponential in the number of query leaves. View
embedding in the query is very expensive in the presence of
*, thus [18] prunes views by building a view automaton at a
cost of X,c(|v]), and then running ¢ through the automaton.
We could also apply this; it would reduce our pruning cost
(e.g., the embedding time in Figure 10) by a factor of |¢| — 1.
Rewriting rich patterns with multiple attributes is studied
in [4], under Dataguide constraints which strongly impact
the algorithm, and without considering distribution. XQuery
rewriting based on XQuery views is studied in [14], which
establishes polynomial complexity for the XPath case.

From XQuery to tree patterns More generally, tree pattern
views with multiple attributes allow answering more queries
than XPath views (the presence and properties of node IDs also
impacts the queries which may be answered, as shown above).
For instance, article(abstract;q cont, author;q yq1) allows an-
swering both article(abstract.on:) and article(author,q;)
(use 7w and duplicate elimination on some ids). Rich tree
patterns, including optional and nested edges, come very close
to capturing an XQuery dialect of nested FLWR (for-where-
return) expressions [5]. In particular, the mandatory part of a
nested FLWR query is found in the for-where clauses of the
outermost block, and is captured by a conjunctive pattern, as
considered in this work.

[22] describes efficient XQuery evaluation techniques, for
queries over documents whose URIs are known (without
using views or a DHT). The benefits of such techniques are
orthogonal - and could be cummulated with - those of using
pre-computed view results, as we advocate in this work.
Distributed XML processing Closest to our work are tech-
niques for indexing and querying XML in DHT networks [11],
[71, [17], [1]. Each of these works uses a specific single
XML indexing strategy, whereas we propose more flexible
views, which can be better tailored to the query needs. View
definitions are indexed on a DHT in [16], but they consider
RDF data and rewritings based on only one view.

A previous version of this work has been informally pre-
sented in a workshop (not in the proceedings) [13]. The
complexity analysis and experiments presented here are new.

VIII. CONCLUSION

The efficient management of large XML corpora in struc-
tured P2P networks requires the ability to deploy data access
support structures, which can be tuned to closely fit application
needs. We have presented the VIP2P approach for building and
maintaining structured materialized views, and processing peer
queries based on the existing views in the DHT network. Using
DHT views adds the cost of a view definition lookup, but pre-
computed views can strongly reduce query evaluation times.
We have characterized the complexity of rewriting conjunctive
tree pattern queries with attributes, using materialized views,
and we have compared several algorithms for view-based
query rewriting; DFR seems to be the most useful. We studied

several view indexing strategies and associated complete view
lookup methods. The LPI method seems best, due to its low
cost both in DHT messages involved in indexing and lookup,
and to its good precision.

Many avenues for future work exist. To efficiently handle
very large views, we could employ horizontal view fragmen-
tation, which would parallelize query execution, as was done
for the DHT index in [1]. Collaborative view recommendation
is a next step; algorithms for the centralized case start to
appear [19]. Also, we are currently extending the view pattern
language presented here with value joins, to handle queries
over XML documents with RDF annotations.
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