
The AiiDA Ecosystem
for Computational Materials Science

Leopold Talirz1,2,3, Aliaksandr V. Yakutovich1,2,3, Sebastiaan P. Huber1,2, Martin
Uhrin2, Spyros Zoupanos1,2, Leonid Kahle1,2, Conrad Johnston1,2, Nicolas Mounet2,

Rico Häuselmann2, Dominik Gresch6, Tiziano Müller1,7, Andrea Cepellotti2, Fernando
Gargiulo2, Snehal Kumbhar1,2, Elsa Passaro1,2, Marco Borelli2, Andrius Merkys2, Ole
Schütt4, Berend Smit1,3, Daniele Passerone1,4, Carlo A. Pignedoli1,4, Boris Kozinsky8,
Joost VandeVondele1,5,,6, Thomas Schulthess1,5,6, Nicola Marzari1,2, Giovanni Pizzi1,2

1National Centre for Computational Design and Discovery of Novel Materials (MARVEL),
École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

2Theory and Simulation of Materials (THEOS), Faculté des Sciences et Techniques de
l'Ingénieur, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

3Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques,
École Polytechnique Fédérale de Lausanne, CH-1951 Sion, Switzerland

4nanotech@surfaces laboratory, Swiss Federal Laboratories for Materials Science and
Technology (Empa), CH-8600 Dübendorf, Switzerland

5Swiss National Supercomputing Centre, CH-6900 Lugano, Switzerland
6ETH Zürich, Switzerland

7University of Zurich, Switzerland
8Research and Technology Center, Robert Bosch LLC, Cambridge, MA 02139, USA

leopold.talirz@epfl.ch, aliaksandr.yakutovich@epfl.ch

Abstract. AiiDA (aiida.net) is a workflow manager for computational science
with a strong focus on provenance, performance and extensibility. When

executing a workflow, AiiDA records the provenance −

calculations performed, codes used and data generated −

in a directed acyclic graph tailored to provide full

reproducibility of any given result. The AiiDA engine
relies on a message queue in order to support high-

throughput use cases of up to 50k calculations per hour,

and the relational database backend enables performant

queries on graphs of millions of nodes. AiiDA plugins can extend
the core python framework in numerous ways, adding not only new workflows
and connections to new simulation codes but also support for new types of job
schedulers, transport protocols and extensions of the AiiDA command line
interface.
While domain experts can install AiiDA on their own hardware, the AiiDA lab
web platform gives novice users access to their personal AiiDA environment in
the cloud, where they can run and manage workflows through tailored and
lightweight web applications in the browser. The ecosystem is completed by the
Materials Cloud dissemination portal, where researchers can publish their AiiDA
graphs, thus providing access not only to the results of calculations, but to every

2

step along the way. Peers can browse the database interactively, download
individual files or the whole database, and start their research right from where
the original author left off.

Keywords: Computational Materials Science, Provenance, Workflows, SaaS

Today, many open questions in computational science call for more than
individual computations using a single code. As the demand for integration and
throughput increases, the design of robust and reproducible workflows is becoming
ever more important. In this context, the move towards open science [1–3] raises the
level of scrutiny and demands that workflows and data be recorded in a way that can
be inspected and reused by scientific peers.

AiiDA. AiiDA is a python framework designed around the four pillars of computational
science: Automation, Data, Environment and Sharing (ADES) [4]. In the default usage
model, AiiDA is installed on the workstation of a researcher and connects to remote
compute resources through the secure shell protocol (SSH). In order to support high-
throughput use cases of 50k calculations per hour, the AiiDA daemon relies on the
RabbitMQ message broker, while the PostgreSQL database backend enables
performant queries on data sets of millions of nodes.

Fig. 1. AiiDA infrastructure. Users interact with AiiDA through the verdi command line,
through interactive shell or via python scripts. AiiDA records the provenance of calculations in
a database and file repository, while the AiiDA daemon automates workflows and interacts with
remote compute resources. Figure reproduced with permission [4].

3

The focus on provenance and extensibility is a design choice that differentiates AiiDA
from other workflow managers in the field of computational materials science, such as
Aflow [5], atomate [6], MAST [7] or OQMD [8]. AiiDA plugins leverage python entry
points to extend both the AiiDA command line interface and the python API - for
example, AiiDA plugins can provide new workflows, connect to new simulation codes,
provide support for new types of schedulers, transport protocols and seamlessly extend
the existing command line interface. A template helps getting started with plugin
development [9], and a plugin registry [10] provides a central point for registering the
plugin. For example, a 2019 survey on the AiiDA mailing list points to more than 30
AiiDA-powered research projects using >25 different AiiDA plugins.
Instead of defining a new workflow markup language based on XML derivatives
(Karajan [11], Askalon [12]) or JSON/yaml (Fireworks [13], Common Workflow
Language [14]), AiiDA aims to make it easy for users to write workflows directly in
python, providing full access to the AiiDA API, including queries of the entire
provenance of previous calculations.
Since the release of the first paper [4], the provenance model of AiiDA has been
extended to include a representation of workflows. While the basic building blocks of
data and calculation nodes are sufficient for recording "data provenance" in a directed
acyclic graph, workflow nodes provide logical abstraction by bundling several
calculations (Figure 2).

4

Fig. 2. AiiDA provenance graph. AiiDA tracks the provenance of data, calculations and
workflows, allowing share it with other AiiDA users, to query and visualize it on the fly.
(top) Autogenerated provenance graph of a calculation (red box) that takes four input data and
produces five output data (green ellipses). In addition to the "data provenance layer" (solid lines),
the graph includes the "logical provenance layer" with the workflow (orange box, dashed lines).
While this workflow simply wraps the calculation, this might just represent the first of many
workflow steps (not shown).
(bottom) Same graph viewed through the interactive provenance browser driven by the AiiDA
REST API. The selected calculation node is shown in the center, with arrows to/from connected
nodes.

Further updates include switching the workflow engine from a polling mechanism to a
message queue, which reduces overhead for quick calculations by orders of magnitude
and makes it possible to run 50k calculations per hour. Reusing one workflow in
another has become easier, and workflows now are auto documenting, telling users
what inputs they expect and what outputs they produce without the need to read code.
AiiDA now includes measures to deal with stability issues when connecting to remote
clusters (network issues, cluster down). The command line interface has been

5

overhauled, providing a uniform feel across all commands, dramatically increasing
code reuse as well as test coverage. Writing AiiDA plugins requires significantly less
boilerplate code, and AiiDA 1.0 is python3 compatible.

AiiDA was developed with the computational scientist in mind - a demographic
familiar with UNIX operating systems, the terminal and python, interested in designing
and tweaking complex workflows. The availability of robust materials science
workflows, however, makes AiiDA interesting for a new user base: non-specialists,
such as experimentalists or researchers at companies, who would like to run well-
defined turnkey solutions using an intuitive graphical user interface.

AiiDA lab. The AiiDA lab leverages state-of-the-art technologies (JupyterHub, Jupyter
widgets and kubernetes) to provide AiiDA-powered "apps" that run in the web browser.
After logging in to the platform, an AiiDA lab user has access to a personal Docker
container through a Jupyter-based graphical user interface. The container comes
preinstalled with AiiDA as well as a selection of apps for common tasks, such as
connecting AiiDA to a remote compute resource or performing a geometry
optimization or band structure calculation using the Quantum ESPRESSO [15] and
CP2K [16] density functional theory (DFT) codes.

Fig. 3. AiiDA lab infrastructure. The AiiDA lab login page is provided by the JupyterHub that
manages user authentication. Once user is logged in, JupyterHub will launch a Docker container
and will expose access to Jupyter notebooks running inside the container. To balance the server
load we deployed AiiDA lab on Kubernetes platform provided by CSCS. Every AiiDA lab
container comes with AiiDA pre-installed and pre-configured.

AiiDA lab apps are nothing but Jupyter notebooks rendered in "app mode" [17].
Developers can therefore write powerful apps directly in python (no JavaScript
required), minimizing the entry barrier for existing AiiDA users to writing such apps.
A library of AiiDA-specific, reusable widgets further simplifies the task of creating

6

apps, making e.g. the upload of a structure just one line of code. One context, in which
this model has already been taken up, are mixed experimental/theoretical groups, where
it frees computational scientists from repetitive tasks by letting the experimentalists run
the corresponding workflows themselves.

The AiiDA ecosystem is completed by the Materials Cloud Archive, a moderated
research data repository for computational materials science registered on re3data [18],
FAIRsharing [19] and recommended by Nature Scientific Data [20]. Besides
welcoming relevant data from computational materials science in general, the Materials
Cloud Archive accepts AiiDA databases. By uploading an AiiDA database, researchers
provide access to the full provenance of their calculations, enabling peers to browse the
database interactively, download individual files or the whole database, and start their
research right from where the original author left off.

AiiDA is free and open source (MIT license), and deployment scripts for the AiiDA lab
are scheduled to be released under the same license later this year.

Demo. Jupyter notebooks will be used to demonstrate how to solve a range of common
tasks using the AiiDA python & command line interfaces (not shown). The demo will
also include an AiiDA lab application that allows to perform electronic structure
calculations with Quantum ESPRESSO [15] and CP2K [16]. Figure 4 provides a
glimpse of the interface for preparing the inputs of a Quantum ESPRESSO calculation
and displaying its results. The use of Jupyter notebooks enables a smooth transition
from regular use to development, with Jupyter widgets providing interactive JavaScript
components while programming in python.

Fig. 4. Electronic structure application. After providing minimal inputs via a Jupyter notebook
in AppMode, a dedicated AiiDA WorkChain generates the full inputs required by the DFT code
and submits the calculation. From then on AiiDA takes over, managing the preparation of the
input files, sending them to the supercomputer, waiting until the calculation is finished, retrieving
the results back and parsing the output.

7

Since the calculation is managed by AiiDA all the data are stored in the AiiDA graph.
To access it one can employ the QueryBuilder a tool that allows to query the AiiDA
database. An example of a query is provided below.

Fig. 5. Querying via the AiiDA python API. This example query searches for atomic structures
that were used as inputs to a Quantum ESPRESSO PwCalculation, filtering only those structures
for which the total computed force has converged to less than 1e-5 eV/Å..

Acknowledgements. The AiiDA ecosystem is supported by the MARVEL National
Centre of Competence in Research, funded by the Swiss National Science Foundation,
the European Centre of Excellence MaX (grant no. 824143), the INTERSECT project
(grant no. 814487), the swissuniversities P-5 “Materials Cloud” project (ID: 182-008),
and the OSSCAR project of the EPFL Open Science Fund.
The Swiss National Supercomputing Centre is acknowledged for virtual hardware,
storage and high-performance computing resources.

References

1. Concordat on Open Research Data.
https://www.ukri.org/files/legacy/documents/concordatonopenresearchdata-pdf/

2. Research Data Alliance (2014) The Data Harvest Report – sharing data for
knowledge, jobs and growth. https://rd-alliance.org/data-harvest-report-sharing-
data-knowledge-jobs-and-growth.html. Accessed 28 Oct 2018

3. Ministerie van Onderwijs C en W (2016) Amsterdam Call for Action on Open
Science - Report.
https://www.government.nl/documents/reports/2016/04/04/amsterdam-call-for-
action-on-open-science. Accessed 19 Aug 2019

4. Pizzi G, Cepellotti A, Sabatini R, et al (2016) AiiDA: automated interactive
infrastructure and database for computational science. Comput Mater Sci
111:218–230. https://doi.org/10.1016/j.commatsci.2015.09.013

5. Curtarolo S, Setyawan W, Hart GLW, et al (2012) AFLOW: An automatic
framework for high-throughput materials discovery. Comput Mater Sci 58:218–
226. https://doi.org/10.1016/j.commatsci.2012.02.005

6. Mathew K, Montoya JH, Faghaninia A, et al (2017) Atomate: A high-level
interface to generate, execute, and analyze computational materials science
workflows. Comput Mater Sci 139:140–152.
https://doi.org/10.1016/j.commatsci.2017.07.030

7. Mayeshiba T, Wu H, Angsten T, et al (2017) The MAterials Simulation Toolkit
(MAST) for atomistic modeling of defects and diffusion. Comput Mater Sci

8

126:90–102. https://doi.org/10.1016/j.commatsci.2016.09.018
8. Saal JE, Kirklin S, Aykol M, et al (2013) Materials Design and Discovery with

High-Throughput Density Functional Theory: The Open Quantum Materials
Database (OQMD). JOM 65:1501–1509. https://doi.org/10.1007/s11837-013-
0755-4

9. Cookie cutter recipe for AiiDA plugins. AiiDA team.
https://github.com/aiidateam/aiida-plugin-cutter. Accessed 28 May 2019

10. AiiDA Team AiiDA registry of plugins. https://aiidateam.github.io/aiida-
registry/. Accessed 28 May 2019

11. von Laszewski G, Hategan M, Kodeboyina D (2007) Java CoG Kit Workflow.
In: Taylor IJ, Deelman E, Gannon DB, Shields M (eds) Workflows for e-
Science: Scientific Workflows for Grids. Springer London, London, pp 340–356

12. Fahringer T, Prodan R, Rubing Duan, et al (2005) ASKALON: a Grid
application development and computing environment. In: The 6th IEEE/ACM
International Workshop on Grid Computing, 2005. pp 10 pp.-

13. Jain A, Ong SP, Chen W, et al (2015) FireWorks: a dynamic workflow system
designed for high-throughput applications. Concurr Comput Pract Exp 27:5037–
5059. https://doi.org/10.1002/cpe.3505

14. Amstutz P, Crusoe MR, Tijanić N, et al (2016) Common Workflow Language,
v1.0

15. Giannozzi P, Baroni S, Bonini N, et al (2009) QUANTUM ESPRESSO: a
modular and open-source software project for quantum simulations of materials.
J Phys Condens Matter 21:395502. https://doi.org/10.1088/0953-
8984/21/39/395502

16. Hutter J, Iannuzzi M, Schiffmann F, Vandevondele J (2014) Cp2k: Atomistic
simulations of condensed matter systems. Wiley Interdiscip Rev Comput Mol Sci
4:15–25. https://doi.org/10.1002/wcms.1159

17. Schütt O. (2019) Appmode: a Jupyter extension that turns notebooks into web
applications. https://github.com/oschuett/appmode. Accessed 28 May 2019

18. Re3data.Org (2018) Materials Cloud Archive. https://doi.org/10.17616/r3zj5w
19. FAIRsharing Team (2018) Materials Cloud
20. Recommended Data Repositories | Scientific Data.

https://www.nature.com/sdata/policies/repositories. Accessed 29 Nov 2018

